Die Arbeitsgemeinschaft Agamen stellt sich vor
DGHT-AG Agamen

Literatur und Schriften


Phrynocephalus KAUP, 1825

Krötenkopfagamen / Toad-headed Agamids

ANANJEVA, N.B. & T.M. SOKOLOVA (1990): The position of the genus Phrynocephalus Kaup, 1825 in agamid systems. -. Trudy, Zoological Institute, Akademii Nauk USSR, Leningrad, 207: 12-21. (in Russisch)

ANANJEVA, N.B. & B.S. TUNIYEV (1992): Historical biogeography of the Phrynocephalus species of the USSR. – Asiatic Herpetological Research, 4: 76-98.

ARNOLD, E.N. Phylogenetic relationships of toad-headed lizards (Phrynocephalus, Agamidae) based on morphology. – Bull. nat. Hist. Mus. London (Zool.), 65: 1-13.

BADMAEVA, V.I. & N.S. ONAEVA (1977): The circadian activity of Phrynocephalus in eastern Manych. – In: Darevskij, I.S. (ed.): Fourth all-Union Herpetological Conference. Questions of Herpetology. – Akademiya Nauk SSSR, Zoologicheskij Institut. Izdatel´stvo ´Nauka´, Leningrad. 19-20. (in Russisch)

BARABANOV, A.V. & N.B. ANANJEVA (2007): Catalogue of available scientific species-group names for lizards of the genus Phrynocephalus KAUP, 1825 (Reptilia, Sauria, Agamidae). – Zootaxa, Auckland, 1399: 1-56.

CAREVSKIJ, S.P. (1929): Contribution to the classification and distribution of the lizards of the genus Phrynocephalus. – Reports of Academy of Sciences of USSR, 1929: 415-419. (in russisch)

DAREVSKIJ, I.S. (1957): Hautdrüsen auf dem Rücken einiger agamider Eidechsen der Gattung Phrynocephalus. – Zool. Jb. (Syst.), 85: 301-304.

DUNAYEV, E.A. (1996): Nomenclature and distribution of toad-agams, Phrynocephalus (Reptilia, Agamidae) in Iliyskaya Hollow. – Byulleten Moskovskogo Obshchestva Ispytalelei Prirody Otdel Biologicheskii, 101(3): 36-41. (in Russisch)

DUNAYEV, E.A. (1996): On the possible use of the ethological features in the taxonomy and phylogeny of toad agamas, Phrynocephalus (Reptilia, Agamidae). – Russian Journal of Herpetology, 3 (1): 32-38.

GUO, X.-G. & Y.-Z. WANG (2007): Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation. – Molecular Phylogenetics and Evolution, 45: 643-662.

LICHANOVA, O.P. (1992): Biochemical polymorphism, systematics, and phylogeny of lizards of genus Phrynocephalus (Agamidae, Reptilia). – Doctoral dissertation, Moscow State University, Moscow. 25 S. (in Russisch)

MACEY, J.R., ANANJEVA, N.B., ZHAO, E.M., WANG, Y.Z. & T.J. PAPENFUSS (1993): An allozyme-based phylogenetic hypothesis for Phrynocephalus (Agamidae) and its implication for the historical biogeography of arid Asia. – In: Zhao, E.M., Chen, P.H. & T.J. Papenfuss (eds.): Proceedings of the First Asian Herpetological Meeting. China Forestry Press, Beijing. 349-350.

MACEY, J.R., SCHULTE, J.A. II, ANAAJEVA, N.B., DYKE, E.T. van, WANG, Y., ORLOV, N., SHAFIEI, S., ROBINSON, M.D., DUJSEBAYEVA, T., FREUND, G.S., FISCHER, C.M., LIU, D. & T.J. PAPENFUSS (2018): A molecular phylogenetic hypothesis for the Asian agamid lizard genus Phrynocephalus reveals discrete biogeographic clades implicated by plate tectonics. – Zootaxa, 4467 (1): 1-81.

Phylogenetic relationships of the agamid lizard genus Phrynocephalus are described in the context of plate tectonics. A near comprehensive taxon sampling reports three data sets: (1) mitochondrial DNA from ND1 to COI (3’ end of ND1, tRNAGln, tRNAIle, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and the 5’ end of COI) with 1761 aligned positional sites (1595 included, 839 informative), (2) nuclear RAG-1 DNA with 2760 aligned positional sites (342 informative), and (3) 25 informative allozyme loci with 213 alleles (107 informative when coded as presence/absence). It is hypothesized that Phrynocephalus phyletic patterns and speciation reflect fault lines of ancient plates now in Asia rejuvenated by the more recent Indian and Arabian plate collisions. Molecular estimates of lineage splits are highly congruent with geologic dates from the literature.  A southern origin for the genus in Southwest Asia is resolved in phylogenetic estimates and a northern origin is statistically rejected. On the basis of monophyly and molecular evidence several taxa previously recognized as subspecies are recognized as species: P. hongyuanensis, P. sogdianus, and P. strauchi as “Current Status”; Phrynocephalus bannikovi, Phrynocephalus longicaudatus, Phrynocephalus turcomanus, and Phrynocephalus vindumi are formally “New Status”. Phylogenetic evaluation indicates a soft substrate habitat of sand for the shared ancestor of modern Phrynocephalus. Size diversity maximally overlaps in the Caspian Basin and northwestern Iranian Plateau. The greatest species numbers of six in sympatry and regional allopatry are found in the southern Caspian Basin and southern Helmand Basin, both from numerous phylogenetic lineages in close proximity attributed to tectonic induced events.

MELNIKOV, D. & N. ANANJEVA (2010): Molecular studies of Phrynocephalus. Review. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 149.

MEZHZHERIN, S.V. & M.L. GOLUBEV (1989): The genetic divergence of Phrynocephalus Kaup (Reptilia, Agamidae) of the USSR fauna. – Reports of Ukraine SSR Academy of Science. Series B Geology, Chemistry and Biological Sciences, 12: 72-74. (in Russisch)

MOODY, M.S. (1982): Phylogenetic origins and relationships of terrestrial genera Agama, Phrynocephalus, and Uromastyx within the family Agamidae (Reptilia: Sauria). – Vertebrata Hungarica, Musei historico-naturalis hungarici, Budapest. 252.

NEYMARK, L.A. (2013): Prospects of faecal analysis as non-invasive method of trophic research: Evidence from Toad-headed Agamas (Phrynocephalus, Agamidae).- In: Ananjeva, N.B., Syromyatnikova, E.V. & I.V. Doronin (eds.): Modern herpetology: Problems and ways of their solutions. The first International Conference of the Young Herpetologists of Russia and Neighboring Countries 25–27 November 2013, Saint-Petersburg. Russian Academy of Sciences Zoological Institute of RAS A.M. Nikolsky Herpetological Society. pp. 118-120. (in Russisch)

PANG, J., WANG, Y., ZHONG, Y., HOELZEL, A.R., PAPENFUSS, T.J., ZENG, X., ANAJEVA, N.B. & Y. ZHANG (2003): A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. – Molecular Phylogenetics and Evolution, 27: 398-409.
Abstract:
We investigated the phylogenetic relationships among most Chinese species of lizards in the genus Phrynocephalus (118 individuals collected from 56 populations of 14 well-defined species and several unidentified specimens) using four mitochondrial gene fragments (12S rRNA, 16S rRNA, cytochrome b, and ND4-tRNALEU). The partition-homogeneity tests indicated that the combined dataset was homogeneous, and maximum-parsimony (MP), neighbour-joining (NJ), maximum-likelihood (ML) and Bayesian (BI) analyses were performed on this combined dataset (49 haplotypes including outgroups for 2058bp in total). The maximum-parsimony analysis resulted in 24 equally parsimonious trees, and their strict consensus tree shows that there are two major clades representing the Chinese Phrynocephalus species: the viviparous group (Clade A) and the oviparous group (Clade B). The trees derived from Bayesian, ML, and NJ analyses were topologically indentical to the MP analysis except for the position of P. mystaceus. All analyses left the nodes for the oviparous group, the most basal clade within the oviparous group, and P. mystaceus unresolved. The phylogenies further suggest that the monophyly of the viviparous species may have resulted from vicariance, while recent dispersal may have been important in generating the pattern of variation among the oviparous species.

PETERS, G. (1984): Die Krötenkopfagamen Zentralasiens (Agamidae: Phrynocephalus. – Mitt. Zool. Mus. Berlin, 60 (1): 23-67.

PETERS, G. (1984): Die Krötenkopfagamen Zentralasiens (Agamidae: Phrynocephalus. – In: Borkin, L.J. (ed.): Reptiles of Mountain and Arid Territories: Systematics and Distribution. Proceedings of the Zoological Institute, leningrad, USSR Academy of Sciences, vol. I: 224-229. (in russisch)

ROSS, W.(1989): Notes on ecology and behaviour with special reference to tail signalling in Phrynocephalus maculatus (Reptilia: Agamidae). – Fauna of Saudi Arabia, Jeddah, 10: 417-422.

SHAO, M., MA, L. & Z. WANG (2015): The complete mitochondrial genome of the toad-headed lizard, Phrynocephalus forsythii (Reptilia, Squamata, Agamidae). – MITOCHONDRIA DNA, 2015. DOI: 10.3109/19401736.2015.1007306.

In this study, we report the complete mitochondrial genome of Phrynocephalus forsythii (Reptilia, Squamata, Agamidae), which is a circular molecule of 16,143 bp in size and consists of 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and 2 non-coding sequence (D-loop). The mitogenome of P. forsythii was similar to the typical mtDNA of vertebrates in gene arrangement and composition. The control region composed of two parts: one (348 bp) between tRNAPhe and the other (636 bp) between tRNAPro and 12S rRNA. The A + T content of overall base of the composition of H-strand is 62.0% (T: 25.6%, C: 25.7%, A: 36.3% and G: 12.3%). The whole mitogenomic sequence of P. forsythii provides powerful data to study of ist phylogenetic position within toad-headed lizards.

SHARMA, R.C. (1978): A new species of Phrynocephalus Kaup (Reptilia: Agamidae) from the Rajastan Desert, India with notes on its ecology. – Bulletin of the Zoological Survey of India, 1 (3): 291-294.

SOKOLOVSKY, V.V., (1975): Comparative and karyologic study of the lizards in the family Agamidae. 1. Chromosome complements of 8 species of the genus Phrynocephalus (Reptilia, Agamidae). – Tsitologiya, Leningrad, 17 (1): 91-93. (in Russisch)

WANG, Z., LU, H.-L., MA, L. & X. JI (2014): Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. – Oecologia, 174: 639-649.

Viviparous Phrynocephalus lizards (Agamidae) are mainly restricted to the Qinghai-Tibet Plateau of China. In this study, we used Phrynocephalus vlangalii females kept under seven thermal regimes for the whole gestation period to test the hypothesis that viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. All females at 24 °C and 93 % of the females at 28 °C failed to give birth or produced stillborns, and proportionally fewer females gave birth at 29 or 35 °C than at 32 °C. Though the daily temperatures encountered were unsuitable for embryonic development, 95 % of the females in nature and 89 % of the females thermoregulating in the laboratory gave birth. There was no shift in the thermal preferences of females when they were pregnant. Although thermal conditions inside natural burrows were unsuitable for embryonic development, mass and sprint speed were both greater in neonates produced in nature. Our data show that (1) longterm exposure of P. vlangalii embryos to temperatures outside the range of 29–35 °C may result in the failure of development, but daily or short-term exposure may not necessarily increase embryonic mortality; (2) low gestation temperatures slow but do not arrest embryonic development, and females produce high-quality offspring in the shortest possible time by maintaining gestation temperatures close to the upper thermal limit for embryonic development; and (3) viviparity is currently adaptive at high elevations because embryos in nature cannot fully develop without relying on maternal thermoregulation. Our data validate the hypothesis tested.

WANG, Y.Z. & J.R. MACEY (1993): On the ecologico-geographic differentiation of Chinese species of the genus Phrynocephalus. – In: Proceedings of the First Asian Herpetological Meeting. Forestry Press, China, Beijing. 147-153. (in chinesisch)

WANG, Y.Z., ZENG, X.M., FANG, Z.L., WU, G.F., PAPENFUSS, T.J. & J.R. MACEY (1999): Study on the relationships of classification, phylogenetics and distribution of the genus Phrynocephalus ssp. (Sauria: Agamidae) wirthe the paleogeographical changes during Cenozoic era in Tibet plateau. – Zoological Research, 20: 178-185. (in chinesisch)

WHITEMAN, R.S: (1978): Evolutionary history of the lizard genus Phrynocephalus (Lacertilia, Agamidae). – Master Thesis, California State University, Fullerton. VIII + 113 S.

ZENG, X.M., WANG, Y.Z., LIU, Z.J., FANG, Z.L., WU, G.F., PAPENFUSS, T.J. & J.R. MACEY (1997): Karyotypes of nine species in the genus Phrynocephalus, with discussion of karyotypic evolution of Chinese Phrynocephalus. – Acta Zool. Sinica, 43: 399-410. (in chinesisch)

ZHAO, K.T. (1997): Notes on the Chinese toad-headed agamids and its diagnostic characters. – J. Suzhou Railway Teachers College, 14: 27-32. (in chinesisch)

ZHAO, K.T. (1999): Phrynocephalus Kaup, 1825. – In: Zhao, E.M. ZHA, K.T. & K.Y. ZHOU (eds.): Fauna Sinica Vol. 2. Squamata. Lacertilia. Science Press, Beijing: 151-193.


Phrynocephalus ahvazicus MELNOKOV et al., (2014)


MELNIKOV, D., MELNIKOVA, E., NAZAROV, R., RAJABIZADEH, M., AL-JOHANY, A.,& S. ZUHAIR (2014): Taxonomic revision of Phrynocephalus arabicus ANDERSON, 1984 complex with description of a new species from Ahvaz, South-Western Iran. – Russian Journal of Herpetology, 21 (2): 149-159.


Phrynocephalus alticola PETERS, 1984

Montane Toad-headed Agama


Phrynocephalus ananjevae MELNOKOV et al., (2013)


MELNIKOV, D., MELNIKOVA, E., NAZAROV, R. & M. RAJABIZADEH (2013): Taxonomic revision of Phrynocephalus persicus DE FILIPPI, 1863 complex with description of a new species from Zagros, Southern Iran. - СОВРЕМЕННАЯ ГЕРПЕТОЛОГИЯ, 13 (1-2): 34–46.


Phrynocephalus arabicus ANDERSON, 1894

Arabische Krötenkopfagame / Arabian Toadhead Agama

AL-SIRHAN, A.-R. & G. BROWN (2010): The status of the two Toad-headed Agamas, Phrynocephalus arabicus (Anderson, 1894), and P. maculatus (Anderson, 1872), in Kuwait. – Zoology in the Middle East, 51.

ANDERSON, J. (1894): On two new species of agamoid lizards from the Hadramut, South-Eastern Arabia. – Ann. Mag. Nat. Hist. (6) 14: 377.

ANDERSON, S.C. (1999): Phrynocephalus arabicus Anderson, 1894. - In: Lizards of Iran. Society for the Study of Amphibians and Reptiles. Oxford, Ohio: 84-85.

MELNIKOV, D., MELNIKOVA, E., NAZAROV, R., RAJABIZADEH, M., AL-JOHANY, A.,& S. ZUHAIR (2014): Taxonomic revision of Phrynocephalus arabicus ANDERSON, 1984 complex with description of a new species from Ahvaz, South-Western Iran. – Russian Journal of Herpetology, 21 (2): 149-159.

ROSS, W. (1995): Tail signalling in populations of Phrynocephalus arabicus, ANDERSON, 1894 (Reptilia: Agamidae). – Zoology in the Middle East, 11: 63-71.
Kurzfassung:
Es werden Beobachtungen zur ventralen Schwanzfürbung in bezug auf das Sexual- und Sozialverhalten der Arabischen Krötenkopfagame Phrynocephalus arabicus im östlichen Saudfi Arabien mitgeteilt.

SCHUSTER, R.K. (2012): A new species of Oochoristica (Cestoda, Linstowiidae) from the Arabian Toad-Headed Agama, Phrynocephalus arabicus (Sauria, Agamidae), from the United Arab Emirates. – Vestnik Zoologii, 46 (3): 29-32.

Eight complete strobilae of Oochoristica phrynocephali Schuster, sp. n. were recovered from small intestines of 4 out of 13 Arabian toad-headed agamas, Phrynocephalus arabicus from Dubai emirate, United Arab Emirates. O. phrynocephali belongs to a group of Oochoristica species possessing circular suckers and fewer than 25 testes in a single cluster. It can be distinguished from O. sobolevi, O. elongata, O. parvogenitalis, O. feliui, O. jonnesi, O. macallisteri, O. lygosomatis, O. junkea and O. novaezealandae by smaller scolices and lesser diameter of suckers.

WITTENBERG, J. (1992): First records of Arabian Toad-head agamid, (Phrynocephalus arabicus) (Sauria: Agamidae) in Jordan. – Zoology in the Middle East, Heidelberg, 7: 59-64.
Kurzfassung:
Für Jordanien wurde erstmals eine Agame des Genus Phrynocephalus nachgewiesen. In Sanddünengebieten mit Büschen beim Wadi Didi (ca. 29°37’N, 35°40’E) im Süden des Landes wurden am 8.4.1988 erst ein Exemplar, dann ca. 4 km südlich am 19.4.1990 zwei Exemplare fotografiert und als Arabische Krötenkopfagame (P. arabicus) nachbestimmt. Die Möglichkeit, daß es sich um P. maculatus gehandelt haben könnte, wird anhand von Merkmalen, Habitat und Verbreitung ausgeschlossen.



Phrynocephalus axillaris BLANFORD, 1875


Krötenkopfagame

AUTUMN, K. & Y.Z. WANG (1988): Preliminary observations on the ecology of Phrynocephalus axillaris and Eremias velox in the Turpan Depression, Xinjiang Uygur Autonomous region, China. – Chinese Herpet. Res., 2 (1): 6-13.


Phrynocephalus clarkorum ANDERSON & LEVITON,1967


ANDERSON, S.C. (1999): Phrynocephalus clarkorum Anderson and Leviton, 1967. - In: Lizards of Iran. Society for the Study of Amphibians and Reptiles. Oxford, Ohio: 85-86.

CLARK, R.J. (1992): Notes on the distribution and ecology of Phrynocephalus clarkorum Anderson & Leviton 1967 and Phrynocephalus ornatus Boulenger 1887 in Afghanistan. – Herpetological Journal, 2: 140-142.v


Phrynocephalus euptilopus ALCOCK & FINN, 1897

Alcock´s Toad-headed Agama


Phrynocephalus erythrurus ZUGMAYER, 1909



Phrynocephalus forsythii ANDERSON, 1872

Forsyth´s Toadhead Agama

CHEN, D., ZHOU, T. & X. GUO (2015): The complete mitochondrial genome of Phrynocephalus forsythii (Reptilia, Squamata, Agamidae), a toad-headed agama endemic to the Taklamakan Desert. – Mitochondria DANN, 2015. DOI: 10.3109/19401736.2014.1003837.

The complete mitochondrial genome was sequenced from a viviparous toad-headed agama, Phrynocephalus forsythii, which is endemic to the Taklamakan Desert. The mitogenome sequence was 17,542 bp in size, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes and a control region (D-loop). The gene arrangement and composition of P. forsythii is identical to the mitogenome of P. theobaldi in that tRNA-Pro was translocated immediately downstream of tRNA-Phe. The D-loop comprised two parts, one existing between tRNA-Thr and tRNA-Phe, and another containing 12 copies of 36-bp tandem repeats inserting between tRNAPro and 12S rRNA. The complete mitogenome sequence of P. forsythii may provide fundamental data for unveiling the phylogenetic origin and adaptive evolution related to Phrynocephalus viviparity.

SHAO, M., MA, L. & Z. WANG (2015): The complete mitochondrial genome of the toad-headed lizard, Phrynocephalus forsythii (Reptilia, Squamata, Agamidae). – MITOCHONDRIA DNA, 2015. DOI: 10.3109/19401736.2015.1007306.

In this study, we report the complete mitochondrial genome of Phrynocephalus forsythii (Reptilia, Squamata, Agamidae), which is a circular molecule of 16,143 bp in size and consists of 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and 2 non-coding sequence (D-loop). The mitogenome of P. forsythii was similar to the typical mtDNA of vertebrates in gene arrangement and composition. The control region composed of two parts: one (348 bp) between tRNAPhe and the other (636 bp) between tRNAPro and 12S rRNA. The A + T content of overall base of the composition of H-strand is 62.0% (T: 25.6%, C: 25.7%, A: 36.3% and G: 12.3%). The whole mitogenomic sequence of P. forsythii provides powerful data to study of ist phylogenetic position within toad-headed lizards.


Phrynocephalus frontalis STRAUCH, 1876

Shansi-Krötenkopfagame / Shansi Toadhead Agama

CHEN Q. (1994): A study on the metabolic rate of Eremias argus and Phrynocephalus frontalis. – Zool. Research, 15 (3): 12, 18. (in Chinesisch)

CHEN Q. (1995): A study on the metabolic rate of Eremias argus and Phrynocephalus frontalis. – Journal of Lanzhou University Natural Sciences, 31 (1): 68-71. (in Chinesisch)

MA, K.-C. (1951): The skeleton of Phrynocephalus frontalis. – Peking nat. Hist. Bull., 19 (4): 438-447.


Phrynocephalus golubewii SHENBROT & SEMYONOV, 1990



Phrynocephalus guttatus GMELIN, 1789

Gefleckter Krötenkopf /Spotted Toadhead Agama

ANANJEVA, N.B. (1981): Phrynocephalus guttatus (Gmelin 1789) – Gefleckter Krötenkopf. – In: Böhme, W. (Hrsg.): Handbuch der Reptilien und Amphibien Europas. Vol. 1. Echsen (Sauria) I. Akademische Verlagsgesellschaft, Wiesbaden. 180-190.

GOLUBEV, M.L. (1989): Phrynocephalus guttatus (GMEL. or Ph. versicolor str. (Reptilia, Agamidae) which one inhabits Kazakhstan? – Vestnik zoologii, Kiev, 23 (5): 38-45. (in russisch)

GOLUBEV, M.L., GORELOV, Y.K., DUNAYEV, E.A. & T.I. KOTENKO (1995): On the finding of Phrynocephalus guttatus (Gmel.) (Sauria, Agamidae) in Turkmeniya and its taxonomic status. – Byulleten Moskovskogo Obshchestva Ispytalelei Prirody Otdel Biologicheskii, 100 (3): 31-39. (in Russisch)

KUBYKIN, R.A. (1977): Ecological observations on tagged Phrynocephalus guttatus in the lower reaches of the River Il´ya southern Pribalkhash. – In: Darevslkij, I.S. (ed.): Fourth all-Union Herpetological Conference. Questions of Herpetology. – Akademiya Nauk SSSR, Zoologicheskij Institut. Izdatel´stvo ´Nauka´. Leningrad. 122-123. (inRussisch)

KUBYKIN, R.A. (1977): Behaviour of the lizard Phrynocephalus guttatus in the lower reaches of the River Ili (southern Pribalkhash´e. – In: Manteifel, B.P. (ed.): Animal group behaviour. – Izdatel´stvo Nauk, Moscow. 204-206. (in Russisch)

MANILO, V.V. & M.L. GOLUBEV (1993): Karyotype information oon some toad agamas of the Phrynocephalus guttatus species group (Sauria, Agamidae) of the former USSR. – Asiatic Herpetological Research, Berkeley, 5: 105-108.

MEZHZHERIN, S. & M.I. GOLUBEV (1993): Allozyme variation and genetic relationships within the Phrynocephalus guttatus species group (Sauria: Agamidae) in the Former USSR. – Asiatic Herpetological Research, 5: 59-64.

QU, Y.F., GAO, J.F., MAO, L.X. & X. JI (2011): Sexual dimorphism and female reproduction in two sympatric toad-headed lizards Phrynocephalus frontalis and P. versicolor (Agamidae). – Anim. Biol., 61: 139-151.

SHENBROT, G.I. & D.V. SEMENOV (1987): Present distribution and taxonomy of Phrynocephalus guttatus (Reptilia, Agamidae). – Russian Journal of Zoology, Moscow, 66 (2): 259-271. (in russisch)

TABACHISHIN, V.G. (2010): Spatial distribution and abundance trends of spotted toad-headed agama, Phrynocephalus guttatus, in its northern habitat in the Volga region. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 155-156.

TABACHISHIN, V.G. & E.V. ZAVIALOV (2005): Present distribution and taxonomic status of the Spotted Toad-headed Agama Phrynocephalus guttatus (GMELIN, 1789) in the Volga region, Russia. [Gegenwärtige Verbreitung und taxonomischer Status der Gefleckten Krötenkopf-Agame Phrynocephalus guttatus (GMELIN, 1789) in der Wolga-Region, Rußland]. – Herpetozoa, Wien, 18 (3/4): 141-146.

Kurzfassung:
Nach Feldbeobachtungen in den Jahren 1996 bis 2003 bevorzugen die Populationen der Gefleckten Krötenkopf-Agame Phrynocephalus guttatus (GMELIN, 1789) aus der Wolga-Region als Lebensraum verfestigte und mäßig verfestigte Sande mit spärlicher Busch- und Grasvegetation. Untersuchungen von russischem und ukrainischem Museumsmaterial ergaben, dass die Populationen auf den Don-Sanden im Volgograd-Gebiet zu Ph. g. guttatus zu stellen sind. Sie zeigen jedoch aufgrund ihrer Randlage hinsichtlich des Gesamtverbreitungsgebietes der Art gewisse Eigentümlichkeiten in bezug auf die Ausprägung einiger meristischer Merkmale.

WITTIG, W. (2002): Haltung und Nachzucht von Phrynocephalus guttatus. –elaphe N.F., Rheinbach, 10 (3): 29-31. (02.872 / 01.931)

Als ich im Oktober 1984 vier im Westen Kasachstans gefangene Krötenkopf-Agamen der Art Phrynocephalus guttatus (Gefleckter Krötenkopf) erhielt, sah ich mich zunächst vor erhebliche Probleme gestellt, denn diese Echsen galten als heikel und schwierig in der Haltung. Aber obwohl die Tiere einen längeren Transport mit Zwischenaufenthalten hinter sich hatten, lebten sie sich schnell im Terrarium ein und erwiesen sich als haltbare und dankbare Pfleglinge, die durch ihre Munterkeit erfreuten und auch bald zur Fortpflanzung schritten. Über die Haltungsbedingungen und die Nachzuchterfolge will ich im Folgenden berichten.

ZAVYALOV, E.V. & V.G.TABACHISHIN (2000): Spotted toad agame (Sauria, Agamidae, Phrynocephalus guttatus) distribution and its taxonomical status in the Lower Volga area. – Curr. Stud. Herp., 1: 40–47. [In Russisch.]

Relying on the analysis of the materials collected at the Zoological museum of the Saratov State University and the data came from literature the Phrynocephalus guttatus population in the Lower Volga area is spread either over hard and loose sands or sands’ modifications northward, up to Peskovatka village in the Gorodischensky region of Volgograd province. The investigation shows that the local populations in the sands along the Don in Volgograd province fall into the nominative subspecies (Ph. g. guttatus Gmel., 1789).


Phrynocephalus guttatus guttatus (GMELIN, 1789)

Gefleckter Krötenkopf / Spotted Toadhead Agama

BADMAEVA, V.I. & N.N. SCERBAK (1983): Phrynocephalus guttatus kalmykus ssp. n. (Sauria, Agamidae) from Kalmykia. – Vestnik zoologii, Kiev, 17(6): 34-37. (in russisch)


Phrynocephalus guttatus alpherakii BEDRIAGA,1906

Gefleckter Krötenkopf / Spotted Toadhead Agama


Phrynocephalus guttatus melanurus EICHWALD,1831

Gefleckter Krötenkopf / Spotted Toadhead Agama


Phrynocephalus guttatus moltschanowi NILKOLSKY, 1913

Gefleckter Krötenkopf / Spotted Toadhead Agama


Phrynocephalus guttatus salsatus GOLUBEV, GORELOV, DUNAYEV & KOTENKO, 1995

Gefleckter Krötenkopf / Spotted Toadhead Agama


Phrynocephalus helioscopus PALLAS, 1773

Sonnengucker / Sunwatcher Toadhead Agama

ANANJEVA, N.B. (1981): Phrynocephalus heliocopus (Pallas 1771) – Sonnengucker. – In: Böhme, W. (Hrsg.): Handbuch der Reptilien und Amphibien Europas. Vol. 1. Echsen (Sauria) I. Akademische Verlagsgesellschaft, Wiesbaden. 191-202.

ANDERSON, S.C. (1999): Phrynocephalus helioscopus (Pallas, 1771). - In: Lizards of Iran. Society for the Study of Amphibians and Reptiles. Oxford, Ohio: 87-88.

BARAN, I., KASPAREK, M. & M. ÖZ (1989): On the distribution of four species of agama (Agamidae) in Turkey. – Zoology in the Middle East, Heidelberg, 3: 37-46.
Kurzfassung:
Die Verbreitung des Harduns, Agama stellio, der Kaukasischen Agame, A. caucasia, der Ruinenagame, A. ruderata, und des Sonnenguckers, Phrynocephalus helioscopus, in der Türkei wird durch Punktkarten dargestellt. A. stellio und A. caucasia schließen sich gegenseitig horizontal und vertikal aus. Das Areal von A. stellio wird durch die März-Isotherme von 8°C und die Juli- und August-Isothermen von 24°C definiert. A. ruderata kommt zwar in den großen, ursprünglichen Steppengebieten Zentral- und Südost-Anatoliens vor, fehlt aber in den Steppen Ost-Anatoliens.

KRYMOV, N.G. (2017): On possible estivation of Phrynocephalus helioscopus (PALLAS, 1771) and Eremias arguta (PALLAS, 1773) in the Altai region. - Curr. Stud. Herp., 17 (1-2): 66-70.

Summer counts of Phrynocephalus helioscopus (Pallas, 1771) and Eremias arguta (Pallas, 1773) were conducted in the Altai Region during April – September, 2016. A sharp decline in the activity of lizards in June and July was noted, due to the high temperatures and dry weather. As a result of excavation of some burrows, lizards in a non-active state were found. The possibility of summer hibernation (estivation) of the species is considered.

MELNIKOV, D., ANANJEVA, N.B., RAJABIZADEH, M. & K. MILTO (2009): On Systematics and phylogeography of sun wtcher toad agamas Phrynocephalus helioscopus (PALLAS, 1771). - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 303.

SCHLEICH, H.-H. (1976): Über Phrynocephalus helioscopus aus Persien (Reptilia, Sauria, Agamidae). – Salamandra, Frankfurt/Main, 12 (4): 189-193. (00.052)
Zusammenfassung:
Phrynocephalus helioscopus ist in seinem Biotop nicht gleichmäßig verteilt. Gruppen von etwa 12-20 Individuen bewohnen Areale von etwa 50 m². Die Hauptnahrung freiolebender Tiere besteht aus Ameisen (bis 1,5 cm Länge). AM Schädelskelett fallen die geflügelten Präfrontalia auf. Weder drohendes noch aggressives Verhalten war zu bemerken. Beim Besprühen stoillten die Tiere ihren Durst. Bei weiteren Haltungsversuchen wäre Besprühen mit destilliertem beziehungsweise kalkarmem Wasser anzuraten.

SOLOVYEVA, E.N. (2010): Molecular differentiation and distribution within the species complex of Phrynocephalus helioscopus (Reptilia: Agamidae). - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 154-155.

SOLOVYEVA, E.N., POYARKLOV, N.A., DUNAEV, E.A., DUYSEBAYEVA, T.N. & A.A. BANNIKOVA (2011): Molecular Differentiation and Taxonomy of the Sunwatcher Toad-[1]Headed Agama Species Complex Phrynocephalus Superspecies helioscopus (Pallas 1771) (Reptilia: Agamidae). - Russian Journal of Genetics, 47(7): 842–856.

Lizards of the sunwatcher toad[1]headed agama species complex Phrynocephalus superspecies helioscopus, mostly distributed in Central Asia and Middle East, were examined using analysis of variation at the mitochondrial cytochrome oxidase c subunit I gene fragment and fingerprint analysis of nuclear DNA (inter[1]SINE PCR technique). A total of 86 individual tissue samples from 53 populations, to the full extent representing different parts of the species complex range, were subjected to molecular genetic examination, and surprisingly deep differentiation was revealed. The populations analyzed split into 12 isolated phylo[1]groups, many of which were characterized by a narrow range and genetic isolation. Monophyly of sunwatcher (Ph. helioscopus) and Persian (Ph. persicus) toad[1]headed agamas was confirmed. However, both of these spe[1]cies probably represent the species complexes. Zoogeography of Central Asiais discussed.

Phrynocephalus helioscopus helioscopus PALLAS, 1773

Sonnengucker / Sunwatcher Toadhead Agama

RUSTAMOV, A.K. & S. SHAMMAKOV (1967): Ecology of Phrynocephalus helioscopus helioscopus Pallas in Turkmenia. – Zool. Zh., 46: 741-748. (in Russisch)


Phrynocephalus helioscopus cameranoi BEDRIAGA, 1907

Sonnengucker / Sunwatcher Toadhead Agama


Phrynocephalus helioscopus meridionalis DUNAYEV, SOLOVYEVA & POYARKOV, 2012

Sonnengucker / Sunwatcher Toadhead Agama


Phrynocephalus helioscopus saidalievi SATTOROV, 1981

Sonnengucker / Sunwatcher Toadhead Agama


Phrynocephalus helioscopus sergeevi DUNAYEV, SOLOVYEVA & POYARKOV, 2012

Sonnengucker / Sunwatcher Toadhead Agama


Phrynocephalus helioscopus turcomanus DUNAYEV, SOLOVYEVA & POYARKOV, 2012

Sonnengucker / Sunwatcher Toadhead Agama


Phrynocephalus helioscopus varius EICHWALD, 1831 

Sonnengucker / Sunwatcher Toadhead Agama


Phrynocephalus horvathi MÉHELY, 1894

Sonnengucker / Sunwatcher Toadhead Agama

DAREVSKII, I.S. (1960): The population dynamic, migration and growth in Phrynocephalus helioscopus persicus de Fill in the Arax River Valley (Armenia). - Byull. Mosk. Obshch. Isp. Prir.Otd. Biol., 65 (6): 31-38.

GÜL, C. & M. TOSUNOĞLU (2011): Hematological reference intervals of four agamid lizard species from Turkey. – Herpetozoa, Wien, 24 (1/2): 51-59.


Phrynocephalus interscapularis LICHTENSTEIN, 1856

Lichtenstein´s Toadhead Agama

ANDERSON, S.C. (1999): Phrynocephalus interscapularis  Lichtenstein, 1856. - In: Lizards of Iran. Society for the Study of Amphibians and Reptiles. Oxford, Ohio: 88-89.

DUJSEBAYEVA, T.N. (1994): The topography and numerical distribution of skin sense organs in the skin of Phrynocephalus interscapularis (Lacertilia: Agamidae). – Sedlevinia, 2 (4): 10-14. (in Russisch)


Phrynocephalus interscapularis interscapularis LICHTENSTEIN, 1856

Lichtenstein´s Toadhead Agama


Phrynocephalus interscapularis sogdianus CHERNOV 1948

Lichtenstein´s Toadhead Agama

CHERNOV, S.A. (1959): Phrynocephalus interscapularis sogdianus subsp. nov. In: Fauna of the Tajik SSR, Vol. XVIII: 74-79. – Academy of Sciences of Tajik SSR, Proceedings, Volume XCVIII. (in Russisch)


Phrynocephalus lutensis KAMALI & ANDERSON, 2015


KAMALI, K. & S.C. ANDERSON (2015): A new Iranian Phrynocephalus (Reptilia: Squamata: Agamidae) from the hottest place on earth and a kedy to the genus Phrynocephalus in southwestern Asian and Arabia. – Zootaxa, 3904 (2): 249-260.

A new species of agamid lizard, Phrynocephalus lutensis sp. nov., is described from the Lut Desert in Iran. It is a species adapted to wind-blown sand in this semi-isolated basin. It appears to be most closely similar to P. luteoguttatus and P. euptilopus on the basis of external morphology. A key to the 19 known Phrynocephalus species of southwestern Asia and Arabia is presented for the first time.


Phrynocephalus luteoguttatus BOULENGER, 1887

Yellow-speckled Toad-headed Agama

ANDERSON, S.C. (1999): Phrynocephalus luteoguttatus Boulenger, 1887. - In: Lizards of Iran. Society for the Study of Amphibians and Reptiles. Oxford, Ohio: 89-90.


Phrynocephalus maculatus ANDERSON, 1872

Gefleckte Krötenkopfagame / Blacktail Toadhead Agama

ABU BAKER, M., ŠIROKÝ, P., AMR, Z. & D. MODRÝ (2005): Discovery of a population of Phrynocephalus maculatus ANDERSON, 1872 in the Hashemite Kingdom of Jordan. [Erstnachweis von Phrynocephalus maculatus ANDERSON, 1872 für Jordanien]. – Herpetozoa, Wien, 18 (3/4): 107-113.

Kurzfassung:
Die vorliegende Arbeit beinhaltet den Erstnachweis von Phrynocephalus maculatus ANDERSON, 1872 in Jordanien. Diagnostisch relevante morphologische Daten werden angegeben und der Lebensraum wird beschrieben. Taxonomie und Variabilität innerhalb P. maculatus werden diskutiert und mit dem Untersuchungsmaterial verglichen. Trotz einiger geringfügiger Unterschiede zur Originalbeschreibung werden die aufgesammelten Exemplare der Unterart P. m. longicaudatus HAAS, 1957 zugeordnet.

AL-SIRHAN, A.-R. & G. BROWN (2010): The status of the two Toad-headed Agamas, Phrynocephalus arabicus (Anderson, 1894), and P. maculatus (Anderson, 1872), in Kuwait. – Zoology in the Middle East, 51.

ANDERSON, S.C. (1999): Phrynocephalus maculatus Anderson, 1872. - In: Lizards of Iran. Society for the Study of Amphibians and Reptiles. Oxford, Ohio: 90-92.

BOGDANOV, O.P., ATAEV, C. & S. SHAMMAKOV (1974): The finding of Phrynocephalus maculatus in the USSR. – Zoologicheskij Zh., 53 (2): 304-305. (in Russisch)

MALEKMOHAMMADI-KALAHROUDI, M. & V. HOJATI (2014): The Female Reproductive Cycle of the Spotted Toad-headed Agama, Phrynocephalus maculatus (Sauria: Agamidae) in Iran. - Iranian Journal of Animal Biosystematics (IJAB) 10(2): 185-194.

The Spotted Toad-headed Agama, Phrynocephalus maculatus, is a member of the Agamidae family distributed in the central and south-eastern deserts of Iran. Iranian specimens are rare in collections. In this research, the female reproductive cycle of this species was studied from April 5 to August 5, 2013. Totally, 15 adult females were collected by hand at midday from southern parts of Damghan County, located in Semnan Province of Iran. Ovaries were removed and processed for histological and morphometric studies. The oogenic cycle begins from early April, mating occurs at the beginning of May, with oviposition occurring from late May to mid July. Females lay 2-3 eggs per clutch with the possibility of producing a secondary clutch later in the season. Maximum reproductive activity occurs in May and early June and reduces from early July and ends in August. There was no significant difference between the right and left side of the reproductive system. Hence, oogenesis occurs from April through July, P. maculatus follows an associated reproductive cycle typical for temperate species.

ROSS, W. (1989): Notes on ecology and behaviour with special reference to tail signalling in Phrynocephalus maculatus (Reptilia: Agamidae). – Fauna of Saudi Arabia, Jeddah, 10: 417-422.

RUSTAMOV, A.K. & S. SHAMMAKOV (1977): Ecology of Phrynocephalus maculatus. – Zoologicheskij Zh., 56 (9): 1351-1356. (In Russisch)

SCHOLZ, S., SIEGENTHALER, F. & T.M. WILMS (2013): A new locality record of Phrynocephalus maculatus ANDERSON, 1872, from Jordan. – Herpetozoa, Wien, 25 (3/4): 174-179.


Phrynocephalus maculatus maculatus ANDERSON, 1872

Gefleckte Krötenkopfagame / Blacktail Toadhead Agama


Phrynocephalus maculatus longicaudatus HAAS, 1957

Gefleckte Krötenkopfagame / Blacktail Toadhead Agama


Phrynocephalus mystaceus (PALLAS, 1776)

Bärtiger Krötenkopf / Secret Toadhead Agama

ANANJEVA, N.B. (1981): Phrynocephalus mystaceus (Pallas 1776) – Bärtiger Krötenkopf. – In: Böhme, W. (Hrsg.): Handbuch der Reptilien und Amphibien Europas. Vol. 1. Echsen (Sauria) I. Akademische Verlagsgesellschaft, Wiesbaden. 203-216.

ANANJEVA, N.B. (1986): On the validity of Megalochilus mystaceus (Pallas 1776). – Proceedings of the Zoological Institute, 157, USSR Academy of Science, Leningrad. 4-13. (in russisch)

DATHE, F. (1986): Phrynocephalus mystaceus (Pallas, 1776) Bärtiger Krötenkopf (Familie: Agamidae, Agamen). – Aquarien Terrarien, Leipzig, 33 (8): 288.

DIECKMANN, M. (2011): Bemerkungen zur Haltung des Bärtigen Krötenkopf Phrynocephalus mystaceus (PALLAS, 1776). – Iguana, 24 (1): 21-26.

GOLUBEV, M.L. & T.S. SATTOROV (1992): On intraspecific structure and intraspecific relations of the ear-folded toad agama Phrynocephalus mystaceus (Reptilia, Agamidae). – Vestnik Zoologii, 1992 (3): 26-32. (in Russisch)

KHONYAKINA, Z.P. (1962): Population dynamics of Phrynocephalus mystaceus Pall. in Kumtorkali region of Daghestan ASSR. – Zool. Zh., 41: 778-780.

KRASSOWSKY, D.B. (1932): Beitrag zur Systematik von Phrynocephalus mystaceus (Pall.). - Zoologischer Anzeiger, Leipzig 97(7/8): 225-228.

MERTENS, R. (1952): Der „Bärtige Krötenkopf“ und seine Warnstellung (Phrynocephalus mystaceus). – Natur und Volk, 82: 15-19.

MÜLLER, H.D. (2002): Der Bärtige Krötenkopf Phrynocephalus mystaceus (PALLAS, 1776) im Terrarium. – Draco, Münster, 3 (2): 50-57. (02.931)

SEMENOV, D.V. & G.I. SHENBROT (1990): Species of the genus Phrynocephalus of the USSR fauna. Description of a new subspecies with remarks on the taxonomic status of Phrynocephalus mystaceus (Reptilia, Agamidae). – Zool. Zh. (USSR), 69 (5): 76-81.

SHAMMAKOV, S. & G. MARKOV (1970): Occurrence of a nematode Abbreviata turcomanica on Phrynocephalus mystaceus in central Karakum. – Izv. Akad. Nauk turkmen. SSR (Biol.), 1970 (6): 76-78. (in Russisch)

SHAMMAKOV, S. & K. NIZAMUTDINOVA (1970): On ecology of Phrynocephalus mystaceus Pallas in Central Karkum. – Izv. Akad. Nauk turkmen. SSR (Biol.), 1970: 66-70. (in Russisch)


SHIBANOV, N. (1941): On the age-variability and geographical forms of Phrynocephalus mystaceus (Pall.). – Arch. Mus. zool. Moscou, 6: 201-210. (in Russisch)

VELDRE, S.R. (1964): On the reality of subspecies division for the lizard Phrynocephalus mystaceus (Pall.). – Vestn. leningr. Univ. (Biol. Ser.), 1964 (3): 34-40. (in Russisch)


Phrynocephalus mystaceus mystaceus (PALLAS, 1776)

Bärtiger Krötenkopf / Secret Toadhead Agama

PORCU, D. (2019): Skurril und agil: Bärtige Krötenkopfagamen im Terrarium. – Reptilia, 24 (5): 34-36.

SEMENOV, D.V. & G.I. SHENBROT (1990): Species of the genus Phrynocephalus of the USSR fauna. Description of a new subspecies with remarks on the taxonomic status of Phrynocephalus mystaceus (Reptilia, Agamidae). – Zool. Zh. (USSR), 69 (5): 76-81.


Phrynocephalus mystaceus khorasanus SOLOVYEVA, DUNAYEV, NAZAROV, RADJABIZADEH & POYARKOV 2018

Bärtiger Krötenkopf / Secret Toadhead Agama


Phrynocephalus ornatus BOULENGER, 1887

Krötenkopfagame

ANDERSON, S.C. & A.E. LEVITON (1967): A new species of Phrynocephalus (Sauria: Agamidae) from Afghanistan, with remarks on Phrynocephalus ornatus Boulenger. – Proceedings of the California Academy of Sciences, ser. 4, 35 (11): 227-234.

CLARK, R.J. (1992): Notes on the distribution and ecology of Phrynocephalus clarkorum Anderson & Leviton 1967 and Phrynocephalus ornatus Boulenger 1887 in Afghanistan. – Herpetological Journal, 2: 140-142.


Phrynocephalus ornatus ornatus BOULENGER, 1887


Phrynocephalus ornatus vindumi GOLUBEV,1998

GOLUBEV, M.L. (1998): A new subspecies of Phrynocephalus ornatus Boulenger from eastern Iran, with a key to South-Westernand Middle Asian microphrynocephalids. - Hamadryad, 23 (2): 162–168.


Phrynocephalus persicus DE FELIPPI, 1863

Przewalski´s Toadhead Agama

DAREVSKII, I.S. (1960): The population dynamic, migration and growth in Phrynocephalus helioscopus persicus de Fill in the Arax River Valley (Armenia). - Byull. Mosk. Obshch. Isp. Prir.Otd. Biol., 65 (6): 31-38.

GÜL, C. & M. TOSUNOĞLU (2011): Hematological reference intervals of four agamid lizard species from Turkey. – Herpetozoa, Wien, 24 (1/2): 51-59.

MÉHELY, L. (1899): A békafejű gyík egy örményországi fajváltozata (Phrynocephalus helioscopus Pall. var. horváthi My.) [Eine Varietät der „froschköpfigen” Eidechse in Armenien (Phrynocephalus helioscopus Pall. var. horváthi My.).]. - Természetrajzi Füz. 22: 362-364, Pl. XIV.

MELNIKOV, D., MELNIKOVA, E., NAZAROV, R. & M. RAJABIZADEH (2013): Taxonomic revision of Phrynocephalus persicus DE FILIPPI, 1863 complex with description of a new species from Zagros, Southern Iran. - СОВРЕМЕННАЯ ГЕРПЕТОЛОГИЯ, 13 (1-2): 34–46.

TADEVOSYAN, T.L. (2007): The role of vegetation in microhabitat selection of syntopic lizards, Phrynocephalus persicus, Eremias pleskei, and Eremias strauchi from Armenia. – Amphibia-Reptilia, 28 (3): 444-448.

Composition and density of vegetation are important habitat quality indicators for reptiles. The goal of this note was to determine dominant plant species, optimal size and density in habitats of syntopic lizards in the Goravan Sands Sanctuary. The role of vegetation variables was considered in relation to differences in thermoregulation of syntopic Phrynocephalus persicus, Eremias pleskei, and Eremias strauchi.Microhabitats of P. persicus differed from that of E. pleskei and of E. strauchi by a relatively frequent encounter of the plant Achillea tenuifolia, which is considered as potential habitat quality indicator. Phrynocephalus persicus generally used microhabitats with sparser vegetation. It is supposed that the excessive growth of shading vegetation can have a more negative impact on P. persicus than on E. pleskei.

USHAKOV, B.P. (1962): Cytophysiological analysis of intraspecific differentiation of takyr toad lizards. – Dokl. Akad. Nauk SSSR, 144: 1178-1180. (in Russisch)


Phrynocephalus persicus persicus DE FELIPPI, 1863


Phrynocephalus persicus horvathi MEHLEY, 1894

ASLANYAN, A.V., PETROSYAN, R.P. & M.S. ARAKELYAN (2014): About extinction alarm situation fort wo species of lizards in Ararat Valleyx of Armenia. – In: Proceedings of the International conference „Biological diversity and conservation problems of the fauna of the Caucasus – 2“, Yerevan, Armenia, September 23-26..Publishing house LLC „Spika“, Yerevan, pp. 45-47.


Phrynocephalus przewalskii STRAUCH, 1876

Przewalski´s Toadhead Agama

CHANG CHENG (1995): Histological changes in the epidermis of Phrynocephalus prezewalskii during the sloughing cycle. – Journal of Lanzhou University Natural Sciences, 31 (1): 55-60. (in Chinesisch)

CHANG CHENG & WANG ZIREN (1996): Morphological studies of the skin receptor of Phrynocephalus prezewalskii. – Journal of Lanzhou University Natural Sciences, 32 (1): 92-97. (in Chinesisch)

FU, J. (2010): Male-mediated gene flow in the toad-headed lizards Phrynocephalus przewalskii. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 144.

HAIGEN, X. & Y. FENGXIANG (1995): Simulation model of activity of Phrynocephalus przewalskii. – Ecological Modelling, 77 (2-3): 197-204.

LI, R.D. & N.F. LIU (1992): The influence of environmental temperatures on body temperatures of Phrynocephalus przewalskii and Eremias multiocellata and their selections of environmental temperatures. – Chin. Zool. Res., 13: 47-52.

The paper deals with the relationship between the body temperatures of Phrynocephalus przewalskii (Sthauch) and Eremias multiocellata (Guenther) and the environmental temperatures,their selections of environmental temperatures and their resistance against low and high temperatures. The body temperatures of przewalskii and multiocellata were negatively interrelated to environmental temperatures (P<0.001). Under the same temperatures. The body temperatures of przewalskii were 3 °C higher than that of multiocellata. The environmental temperatures selected by the former were 38-40 °C,whereas the latter required only 35-37 °C. The hot and dead temperatures of przewalskii were higher than those of multiocellata. The threshhold of the hot and dead temperatures in przewalskii varied from 44 °C to 48 °C and its highest dead temperature (TL[50]) was up to 48 °C,and that in multiocellata was 42-46 °C and its highest hot temperature (TL[50]) was 46 °C. The ability that two species can resist against low temperatures was equal. The cold and dead temperatures varied from 0 °C to -3 °C. The cold and dead temperatures (TL[50]) of przewalskii were -2.3 °C, but those of multiocellata were -2.5 °C. These significant differences between the two species are concerned with the characteristics of each, habitats and sizes of the bodies.

LI, S.-R., WANG, Y., MA, L., ZENG, Z.-G., BI, J.-H. & W.-G. DU (2017): Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability. – Journal of Comparative Physiology B, 2017. doi:10.1007/s00360-017-1087-4

How ectotherms exploit thermal resources has important implications for their habitat utilization and thermal vulnerability to climate warming. To address this issue, we investigated thermal relations of three sympatric lizard species (Eremias argus, Eremias multiocellata, and Phrynocephalus przewalskii) in the desert steppe of Inner Mongolia, China. We determined the thermoregulatory behavior, body temperature (Tb), operative temperature (Te), selected body temperature (Tsel), and critical thermal maximum (CTmax) of adult lizards. Based on these physiological parameters, we quantified the accuracy and effectiveness of thermoregulation as well as thermal-safety margin for these species. The three species were accurate and effective thermoregulators. The P. przewalskii preferred open habitats, and had a higher Tb than the two Eremias lizards, which preferred shade habitats and shuttled more frequently between the shade and sun. This indicated that the three sympatric lizards have different thermoregulatory behavior and thermal physiology, which might facilitate their coexistence in the desert steppe ecosystem. In addition, the P. przewalskii had higher Tsel and CTmax, and a wider thermal-safety margin than the two Eremias lizards, suggesting that the two Eremias lizards would be more vulnerable to climate warming than P. przewalskii.

LI, T., ZHAO, B., ZHOU, Y.K., HU, R. & W.G. DU (2014): Thermoregulatory behavior is widespread in the embryos of reptiles and birds. – The American Naturalist, 183 (3): 443-451.

Recent studies have demonstrated that thermoregulatory behavior occurs not only in posthatching turtles but also in turtles prior to hatching. Does thermoregulatory behavior also occur in the embryos of other reptile and bird species? Our experiments show that such behavior is widespread but not universal in reptile and bird embryos. We recorded repositioning within the egg, in response to thermal gradients, in the embryos of three species of snakes (Xenochrophis piscator, Elaphe bimaculata, and Zaocys dhumnades), two turtles (Chelydra serpentina and Ocadia sinensis), one crocodile (Alligator sinensis), and four birds (Coturnix coturnix, Gallus gallus domesticus, Columba livia domestica, and Anas platyrhynchos domestica). However, we detected no significant thermoregulation by the embryos of two lizard species (Takydromus septentrionalis and Phrynocephalus frontalis). Overall, embryonic thermoregulatory behavior is widespread in reptile as well as bird species but may be unimportant in the small eggs laid by most lizards.

MA, L., SUN, B.-J., LI, S.-R., HAO, X., BI, J.-H. & W.-G. DU (2018): The vulnerability of developing embryos to simulated climate warming differs between sympatric desert lizards. – JEZ-A Ecological and Integrative Physiology, 2018. https://doi.org/10.1002/jez.2179

The vulnerability of species to climate warming varies along latitudinal and elevational clines, but how sympatric species vary in vulnerability to climate warming remains largely unknown. We experimentally simulated nest temperatures of two sympatric lizards with divergent microhabitat preferences (Phrynocephalus przewalskii and Eremias argus), under climate warming senarios, to determine the response of embryos to increased mean temperatures and heat waves. Our study demonstrated that simulated climate warming reduced hatching success and hatchling size and growth in E. argus (that prefers closed microhabitats), but had less effect in P. przewalskii (that occupies open microhabitats). The reduced growth rate of E. argus hatchlings was associated with a decrease in metabolic rate, which was more evident in hatchling E. argus than in P. przewalskii. Our results suggest lizards that prefer closed microhabitats may be more vulnerable to climate warming than those that prefer open microhabitats; further studies are needed to test this hypothesis. More generally, the divergent responses of sympatric species to climate warming highlights the importance of distinguishing the thermal sensitivity of behavior and physiology for each species of a community, in order to make predictions about the impacts of climate warming at regional scales.

WANG, X., LI, S., LI, L., ZHANG, F., HAN, X., BI, J. & B. SUN (2019): Thermal-physiological Strategies Underlying the Sympatric Occurrence of Three Desert Lizard Species. - Asian Herpetological Research, 10 (3): 190-196.

Sympatric reptiles are the ideal system for investigating temperature-driven coexistence. Understanding thermally physiological responses of sympatric lizards is necessary to reveal the physiological mechanisms that underpin the sympatric occurrence of reptiles. In this study, we used three lizard species, Eremias argus, E. multiocellata, and Phrynocephalus przewalskii, which are sympatric in the Inner Mongolia desert steppe, as a study system. By comparing their resting metabolic rates (RMR) and locomotion at different body temperatures, we aimed to better understand their physiological responses to thermal environments, which may explain the sympatric occurrence of these lizards. Our results showed that E. argus had significantly higher RMR and sprint speed than E. multiocellata, and higher RMR than P. przewalskii. In addition, the optimal temperature that maximized metabolic rates and locomotion for E. argus and E. multiocellata was 36°C, whereas for P. przewalskii it was 39°C. Our study revealed the physiological responses to temperatures that justify the sympatric occurrence of these lizards with different thermal and microhabitat preferences and active body temperatures. Eremias argus and E. multiocellata, which have lower body temperatures than P. przewalskii, depend on higher RMR and locomotion to compensate for their lower body temperatures in field conditions. Our study also highlights the importance of using an integrative approach, combining behavior and physiology, to explore the basis of sympatric occurrence in ectothermic species.


Phrynocephalus putajatei



Phrynocephalus raddei BOETTGER, 1888


SHAMMAKOV, S.S., ATAEV, C.A. & Z.Y. KAMALOVA (1973): The ecology of Phrynocephalus raddei in Turkmenia. – Ekologiya, 1973 (6): 80-83.


Phrynocephalus raddei raddei BOETTGER, 1888


Phrynocephalus raddei boettgeri BEDRIAGA, 1906


Phrynocephalus reticulatus EICHWALD, 1831

Reticulated Toad-headed Agama

Phrynocephalus reticulatus reticulatus EICHWALD, 1831

Reticulated Toad-headed Agama


Phrynocephalus reticulatus bannikovi DAREVSKY, RUSTAMOV & SHAMMAKOV, 1976

Reticulated Toad-headed Agama

OVEZMUKHAMMEDOV, A. (1977): A new Coccidia Isospora rustamovi, sp. n. from the lizard (Phrynocephalus reticulatus bannicovi) in Turkmenistan. – Izvestiya Akad. Nauk Turkmen. SSR (Biol.), 1977 (6): 67-78. (in Russisch)

SHAMMAKOV, S. (1977): On the ecology of Phrynocephalus reticulatus bannicovi. – In: Darevskij, I.S. (ed.): Fourth all-Union Herpetological Conference. Questions of Herpetology. – Akademiya Nauk SSSR, Zoologicheskij Institut. Izdatel´stvo ´Nauka´. Leningrad. 230.


Phrynocephalus roborowskii BEDRIAGA, 1907

Roborowski´s Toadhead Agama


Phrynocephalus rossikowi NIKOLSKY, 1898

Uzbekistan Toadhead Agama


Phrynocephalus rossikowi rossikowi NIKOLSKY, 1898

Uzbekistan Toadhead Agama


Phrynocephalus rossikowi shammakowi SZCZERBAK & GOLUBEV, 1979

Uzbekistan Toadhead Agama


Phrynocephalus sakoi MELNIKOV, MELNIKOVA, NAZAROV, AL-JOHANY& ANANJEVA, 2015



Phrynocephalus scutellatus OLIVIER, 1807

Gray Toadhead Agama

OLIVIER, G.A. (1807): Description of Phrynocephalus scutellatus. – In: “Voyage dans l’Empire Othoman, l’Egypte et la Perse”. Vol. 3. Agasse, Paris.


Phrynocephalus strauchi NIKOLSKY, 1899


KAMALOVA, Z.Y. (1970): Feeding habits of Phrynocephalus reticulates strauchi Nik. in the sands of the Fergana Valley during the summer season. – Ekologiya, 1970 (5): 102-103. (in Russisch)

DUNAYEV, E.A. (1995): Reviewed description of the types of Phrynocephalus strauchi Nikolsky, 1899 (Squamata, Agamidae) and materials on the history of its study, distribution, and variability. – Russian Journal of Herpetology, 2 (2): 87-94.


Phrynocephalus theobaldi BLYTH, 1863

Theobald´s Toad-headed Agama / Toad Mounted Lizard / Snow Lizard

WANG, Y., ZENG, X., FANG, Z., LIU, Z., WU, G., PAPENFUSS, T.J. & R.J. MACEY (1996): A new species of the genus PhrynocephalusPhrynocephalus zetangensis sp. nov. – Zoological Research, 17 (1): 27-29. (in Chinesisch)

WANG, Y.-z., ZENG, X.-m., WU, G.-f., LIU, Z.-j., FANG, Z.-I., PAPENFUSS, T.J. & R.J. MACEY (1996): A newly recorded species of Phrynocephalus from China. – Acta Zootaxonomica Sinica, 21 (1): 9. (in Chinesisch)


Phrynocephalus versicolor STRAUCH, 1876

Mongolischer Krötenkopf

DUNAYEV, E.A. & N.A. POYARKOV (2010): Phylogeny, phylogeography and identification of Asian toad-headed agamas Phrynocephalus (superspecies versicolor). - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 142–143.

GOLUBEV, M.L. (1989): Phrynocephalus guttatus (GMEL. or Ph. versicolor str. (Reptilia, Agamidae) which one inhabits Kazakhstan? – Vestnik zoologii, Kiev, 23 (5): 38-45. (in russisch)

GOLUBEV, M.L. (1993): The variegated toad agama in Djungar Gate (Eastern Kazakhstan) with notes on certain systematic problems of Phrynocephalus versicolor str. (Reptilia: Agamidae). - Asiatic Herpetological Research, 5: 51-58. 9528

KIRMSE, W. & V. SINZ (1968): Freileben und Terrarienhaltung des Mongolischen Krötenkopfes, Phrynocephalus versicolor. - Aquarien Terrarien, Leipzig, 15 (12): 412-415. (1127)

KÖHLER, D. (1982): Begegnungen mit Krötenkopfagamen. – Aquarien Terrarien, Leipzig, 29 (9): 317. (00.171)

QU, Y.F., GAO, J.F., MAO, L.X. & X. JI (2011): Sexual dimorphism and female reproduction in two sympatric toad-headed lizards Phrynocephalus frontalis and P. versicolor (Agamidae). – Anim. Biol., 61: 139-151.


Phrynocephalus versicolor versicolor STRAUCH,1876

Mongolischer Krötenkopf


Phrynocephalus versicolor doriai BEDRIAGA, 1909

Mongolischer Krötenkopf


Phrynocephalus versicolor hispidus BEDRIAGA,1909

Mongolischer Krötenkopf


Phrynocephalus versicolor kulagini BEDRIAGA, 1909

Mongolischer Krötenkopf


Phrynocephalus vlangalii STRAUCH, 1876

Ching Hai Toadhead Agama

ANONYMOUS (2017): Krötenkopfagamen und eine tiergeografische Regel. – TERRARIA/elaphe, 4/2017: 71.

JIN, Y., LIU, N. & J. LI (2007): Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau. -Belg. J. Zool. 137 (2): 197-202.

We examined elevational and environmental aspects of body size variation in the Qinghai toad-headed lizard, Phrynocephalus vlangalii, using principal component analysis (PCA) of 9 morphological traits taken from 565 lizards from 17 populations. The first principal component (PC1) accounted for 67% of the size variation in males and 62% in females. For both males and females, PC1 decreased with increasing elevation. When analyzed in relation with respect to environmental variables, body size showed positive relationship with temperature, air pressure, and activity season length, but showed weaker or inconsistent relationships with rainfall and humidity. The described pattern is the converse of Bergmann’s rule for this lizard species and suggests that this body size pattern is driven by temperature, air pressure or length of the activity season.

LIU, L., GUO, X. & Y. WANG (2010): Phylogeography of Phrynocephalus vlangalii complex on the upper reaches of the Yellow River inferred from mtDNA ND4-tRNAleu sequences. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 147–148.

WANG, Y.Z. & Y.M. JIANG (1992): Study on the taxonomy of Phrynocephalus vlangalii hongyuanensis: a new species of the genus Phrynocephalus (Lacertilia: Agamidae). – In: Jiang, Y.M. (ed.): A collection of papers on Herpetology. Sichuan Science and Technology Press, Chendu, China. Pp. 110-115.

ZHANG, X.D., JI, X., LUO, L.G., GAO, J.F. & L. ZHANG (2005): Sexual dimorphism and female reproduction in the Quinhai toad-headed lizard Phrynocephalus vlangalii. – Acta Zool. Sinica, 51: 1006-1012.


Phrynocephalus vlangalii vlangalii STRAUCH, 1876

Ching Hai Toadhead Agama


Phrynocephalus vlangalii hongyuanensiss ZHAO et al. In JIANG et al. 1980: 111 (?)

Ching Hai Toadhead Agama


zurück / back