Die Arbeitsgemeinschaft Agamen stellt sich vor
DGHT-AG Agamen

Literatur und Schriften


Intellagama (GRAY, 1831)

Australische Wasseragame / Water Dragons

BARTLETT, R.D. & P.P. BARTLETT (1997): Anoles, Basilisks, and Water Dragons. – Barron´s Educational Series, Hauppauge, New York. 96 S.

BLAKE, E. (1985): The captive breeding of Physignathus and the use of vitamin D3 with other species of lizards. – Herptile, 10 (2): 51-58.

BRAZENOV, C.W. (1932): A lizard not previously recorded from Victoria (Physignathus). – Vict. Nat., 49: 171.

CLIFFORD, H.T. & T. HAMLEY (1982): Seed dispersal by water-dragons. – Queensland Naturalist, 23 (5-6): 49.

COBORN, J. (undatiert): The Guide to Owning a Water Dragon. – t.f.h. Publications, Neptune City. 64 S.

GLAUERT, L. (1959): Herpetol. Miscel. X: Dragon Lizards. – Western Austr. Nat., 7: 10-19.

GRIESSEL, H. (1990): Wasseragamen im Terrarium. – Die Aquar. Terrar. Z., Stuttgart, 43 (9): 534-535.

LOVERIDGE, A. (1933): New agamid lizards of the genera Amphibolurus and Physignathus from Australia. – Proc. New. Engl. Zool. Blub, 13: 69-72.

MUDDE, P. (1982): Groene leguanen, basilisken en wateragamen. – Lacerta, 40 (10/11): 218-220. (02.049)

SCHRAMM, U., RUDAT, B. & W. KÜHNEL (1989): Die Nickhaut der Wasseragame. Über besondere Funktionsformen des Epithels der Plica semilunaris conjunctivae. – Verhandlungen der anatomischen Gesellschaft, 82 (1): 381-383.

STORR, G.M. (1974): Agamid lizards of the genera Caimanops, Physignathus and Diporiphora in Western Australia and Northern Territory. – Records W. Aust. Mus., 3 (2): 121-146.

VOGEL, Z. (1969): Die Mini-Saurier. Wasseragamen aus Indien und Australien. - Aquarien Magazin, Stuttgart, 3 (10): 406-408. (1098)

WERNING, H. (2002): Wasseragamen und Segelechsen. – Natur- und Tier-Verlag, Münster. 127 S.

WERNING, H. (2004): Bibliographie der Gattungen Physignathus, Lophognathus und Hydrosaurus. – Iguana-Rundschreiben, 17 (2): 18-31.


Intellagama lesueurii GRAY, 1831

Australische Wasseragame

ALDERTON, D. (1987): Spotlight. The eastern water dragon. – Aquarist and Pondkeeper, 52 (2): 11-12.

ALIBARDI, L. (2000): Epidermal structure of normal and regenerating skin of the agamine lizard Physignathus lesueurii (McCoy, 1878) wirth emphasis on the formation of the shedding layer. – Annales des Sciences naturelles Zoologie et Biologie animale, 21 (1): 27-36.

ALTMANN, H. (1969): Zur Haltung von Physignathus lesueurii. – Die Aquar. Terrar. Z., Stuttgart, 22: 94.

AMEY, A.P., COUPER, P.J. & G.M. SHEA (2012): Intellagama lesueurii (Gray, 1831): the correct combination for the Australian Eastern Water Dragon (Sauria, Agamidae). – Zootaxa, 3390: 65-67.

ANTHONY, M. & L. TELFORD (1996): Observations of the Eastern Water dragon (Physignathus lesueurii) in the northern Wet Tropics area, with a note on an unusual defensive behaviour in a juvenile. – Chondro, 4 (1): 21-22.

AUSTRALIAN HERPETOLOGICAL SOCIETY MEMBERS (1976): Observations on the eastern water dragon Physignathus lesueurii in the natural state and in captivity. – Herpetofauna, Sydney, 8 (2): 20-22.

BAIRD, T.A., BAIRD, T.D. & R. SHINE (2012): Aggressive transition between alternative male saocial tactics in a long-lived Australian Dragon (Physignathus lesueurii) living at high density. – PloS one, 7 (8): 1-8.

Theory predicts the evolution of alternative male social tactics when intense competition coupled with the superior competitive ability of some individuals limits access to reproductive opportunities by others. How selection has shaped alternative social tactics may be especially interesting in long-lived species where size among sexually mature males varies markedly. We conducted experimental studies on long-lived eastern Australian water dragons living where competition was intense to test the hypotheses that mature males adopt alternative social tactics that are plastic, and body condition determine resource-holding potential. Approximately one-half of mature males (N = 14) defended territories using high rates of patrol and advertisement display, whereas 16 smaller mature males having lower body condition indices utilized non-territorial social tactics. Although territorial males were larger in absolute size and head dimensions, their heads were not allometrically larger. Territorial males advertised very frequently using displays involving stereotypical movements of the head and dewlap. More aggressive displays were given infrequently during baseline social conditions, but increased during periods of social instability. Female home ranges overlapped those of several territorial and non-territorial males, but females interacted more frequently with territorial males. The extreme plasticity of social tactics in this species that are dependent on body size was confirmed by two instances when relatively large non-territorial males spontaneously evicted territory owners, and by marked shifts in tactics by non-territorial males in response to temporary experimental removals of territory owners, followed (usually) by their expulsion when original owners were reinstated. The high level of social plasticity in this population where same-sex competitors are densely concentrated in preferred habitat suggests that chronic high energetic costs of defense may select for males to cycle between territorial and non-territorial social tactics depending upon their changing energetic status and their current capacity for competition with rivals.

BARRETT, C. (1931): The Gippsland Water Lizard (Physignathus lesueurii). – Vict. Nat., 47 (10): 162-165.

BAVERSTOCK, P.R. & S.C. DONNELLAN (1990): Molecular evolution in Australian dragons and skinks:progress report. – Memoirs of the Queensland Museum, 29: 323-331.

CLARK, P., JOHNSTONE, A.C.& R. ELLISON (2001): Inclusions in the erythrocytes of eastern water dragons (Physignathus lesueurii). – Aust. Vet. J., 79 (1): 61-62.

COURTICE, G.P. (1981): Respiration in the eastern water dragon, Physignathus lesueurii (Agamidae). – Comparative Biochemistry and Physiology A Comparative Physiology, 68 (3): 429-436.

COURTICE, G.P. (1981): The effect of temperature on bimodal gas exchange and the respiratory exchange ratio in the water dragon, Physignathus lesueurii. – Comparative Biochemistry and Physiology A Comparative Physiology, 68 (3): 437-441.

COURTICE, G.P. (1981): Changes in skin perfusion in response to local changes in pCO² in a diving lizard, Physignathus lesueurii. – Comparative Biochemistry and Physiology A Comparative Physiology, 69 (4): 805-807.

COURTICE, G.P. (1981): Some aspects of diving in a semi-aquatic lizard, Physignathus lesueurii (Agamidae). – Proceedings of the Australian Physiological and Pharmacological Society, 12 (2): 178 S.

COURTICE, G.P. (1985): Effect of hypoxia on cardiac vagal action in a lizard Physignathus lesueurii, and its contribution to diving bradicardia. – In: Grigg, G., Shine, R. & H. Ehmann (eds.): Biology of Australian frogs and reptiles. – Sxurrey Beatty & Sons Pty & the Royal Zoological Society of New South Wales, Chipping Norton (NSW). 373-377.

DIECKMANN, M. & H. WERNING (2014): Poster & Porträt. Intellagama lesueurii (GRAY, 1831). – Iguana, 27 (1): 17-22.

EGERT, J. (2002): Physignathus lesueurii. Care and breeding of the Eastern Water Dragon. – Reptilia (GB), Barcelona, Nr. 20: 48-56.

FISCHER, O. (2020): Wasserdrachen. – Reptilia, Münster, 25 (3): 10-17.

FRÈRE, C.H., NUGENT, D.R., LITTLEFORD-COLQUHOUN, B. & K. STRICKLAND (2015): Intellagama lesueurii Eastern water dragon: Cannibalism. - The Herpetological Bulletin 133: 38-39.

FRANCESCHINI, V. (2001): Olfactory system histochemistry in the agamid Physignathus lesueurii. – Herpetological Review, 32 (1): 7.

FRANCESCHINI, V., LAZZARI, M. & F. CIANI (2001): Lectin-binding patterns in the olfactory system of the lizard, Physignathus lesueurii. – Journal of Morphology, 247 (1): 34-38.

FRAUCA, H. (1972): Die australische Wasseragame (Physignathus lesueurii). – Die Aquar. Terrar. Z., Stuttgart, 25 (8): 280-283.

GRIESSEL, H. (1990): Wasseragamen im Terrarium. – Die Aquar. Terrar. Z., Stuttgart, 43 (9): 534-535.

GRIGG, G.C., DRANE, D.R. & G.P. COUIRTICE (1979): Time constants of heating and cooling in the eastern water dragon, Physignathus lesueurii and some generalizations about heating and cooling in reptiles. – Journal of Thermal Biology, 4 (1): 95-103.

HARLOW, P.S. & F.M. HARLOW (1997): Captive reproduction and longevity in the eastern water dragon (Physignathus lesueurii). – Herpetofauna, Sydney, 27 (1): 154-19.

HAY, M. (1972): The breeding of Physignathus lesueurii in captivity. – Herpetofauna, Sydney, 5 (1): 2-3.

KENT, K., CRISTESCU, R.H., PIZA-ROCA, C., LITTLEFORD-COLQUHOUN, B.L., STRICKLAND, K. & C.H. FRÈRE (2019): Maternal nesting behaviour in city dragons: a species with temperature-dependent sex determination. – J. Urb. Ecol., 2019: 1-11.

Urban environments present some of the greatest challenges to species survival. This is particularly true for species that exhibit thermally sensitive traits, such as temperature-dependent sex determination (TSD). This is because urban environments not only present species with entirely novel ecosystems, but species will also experience increased temperatures. These temperature increases may result not only in offspring mortality, but also skewed population sex ratios. To persist in cities, urban dwellers with TSD will therefore need to adjust the temperature of the nesting environment, either through phenotypic plasticity or rapid evolution through natural selection. Here, we investigate the nesting ecology of a long-lived, urban dwelling reptile, the eastern water dragon (Intellagama lesueurii), to understand how a TSD species may respond to urban environments. Based on data collected from 72 nests over 2 nesting seasons, we show that city dragons not only dug significantly deeper nests than previously observed across their natural riparian habitat, but also nested in novel substrates. Furthermore, we observed a behaviour not previously described in this species, where mothers travel outside of their core home range to nest. This excursion behaviour potentially represents a greater maternal investment and is linked to the selection of specific microhabitats.

KNESE, W.C. (2018): Aus Alt mach Neu – Bau eines Großterrariums für Australische Wasseragamen. – Reptilia, Münster, 23 (1): 56-62.

LANGERWERF, B. (1998): Einfluß schwankender Temperaturen auf den Schlupf bei zwei Echsenarten. – elaphe N.F., 22-24.

LONGLEY, G. (1946-47): Notes on the hatching of the eggs of the Water Dragon (Physignathus lesueurii). – Proceedings of the Royal Zoological Society of New South Wales: 29.

MEEK, R. & R.A. AVERY (2008): Basking in the Australian water dragon Physignathus lesueurii; why do alpha males not respond to operative temperatures in the same way as adults and sub-adults? – Amphibia-Reptilia, 29: 257-262.

MEEK, R., AVERY, R. & E. WEIR (2001): Physignathus lesueurii (Australian water dragon): predation on a skink (Lampropholis delicata). – Herpetological Bulletin, 76: 31-32.

MEEK, R., WEIR, E. & G. SUTCLIFFE (2001): Nest temperatures of the Water Dragon Physignathus leseurii in southeast Australia. - Herp. Bull., (76): 26-27.

PÁČ, L. (1968): Sensory nerve endings in the joint capsules of some Lacertilia (Agama stellio, Physignathus lesueuri). – Scr. Med. (Spisy lék. Fak. Purkyn. Univ.), 41: 155-161. (in Tschechisch)

RADEK, G. (1963): De Wateragaam. – Lacerta, 21: 27-28.

RETALLICK, R.W.R. & J.-M. HERO (1994): Predation of an eastern water dragon (Physignathus lesueurii) by a common brown tree snake (Boiga irregularis). – Herpetofauna, Sydney, 24 (2): 47-48.

RINGMA, J.L. & S.W. SALISBURY (2014): Aquatic locomotor kinematics of the Eastern Water Dragon (Intellagama lesueurii). – J. Herp., 48 (2): 240-248.

Quantitative studies of the axial undulatory swimming techniques used by secondarily aquatic vertebrates have been largely restricted to crocodilians. Numerous members of the suborder Lacertilia (lizards) are also known to swim using axial undulatory techniques, but how they do so has received minimal attention from the scientific community. We investigated the morphology and undulatory locomotor kinematics adopted by the Eastern Water Dragon (Intellagama lesueurii) through observation of natural swimming and filming of animals in a flume tank with a high speed camera. We found that morphological modifications associated with improved swimming ability and correlations between wave characteristics and swimming velocity are limited to the tail. The shape of dorsal spines and the reduction in the width of transverse processes of the caudal vertebrae result in a mediolaterally compressed tail instead of the typically rounded or dorsoventrally compressed tail seen in other Australian agamids. Axial undulatory swimming in I. lesueurii was found to be conceptually similar to that of crocodilians, but the relatively long and thin terminal part of the tail produces a different shaped undulatory wave. Unlike crocodilians and fishes, I. lesueurii does not use frequency moderated velocity control. Instead, changes in velocity are solely controlled by the phase speed of the propagating wave. The combined effect of these traits is comparable efficiency and performance in the water relative to that of crocodilians and an improvement relative to terrestrial lizards.

PETERSEN, J. (1982): Physignathus lesueurii. – Nordisk Herpetologisk Forening, 25 (7): 181-182.

SLAETS, K. (2009): Physignatus lesueurii, ideaal terrariumdier en index voor de opwarming van de aarde. – Terra 24 (5): 29-33.

SLAETS, K. (2017): Intellagama lesueurii, de Australische wateragame. – Lacerta, 75 (4/5): 136-151.

SMITS, J. (2003): Bij de voorplaat: Physignathus lesueurii (GRAY, 1831). – Lacerta, 61 (4): 121-123.

THOMPSON, M.B. (1993): Estimate of the population structure of the eastern water dragon, Physignathus lesueurii (Reptilia: Agamidae), along riverside habitat. – Wildlife Research, 20 (5): 613-619.

VOGEL, Z. (0000): Die Mini-Saurier. Wasseragamen aus Indien und Australien. – Aquarien Magazin. S. 406-408.

ZWINENBERG, A.J. (1977): Die australische Wasseragame (Physignathus lesueurii). – Aquaria, 24 (6): 93-97.

ZWINENBERG, A.J. (1982): Die Australische Wasseragame, Physignathus lesueurii. – Die Aquar. Terrar. Z., Stuttgart, 35 (12): 473-475.

ZWINENBERG, A.J. (1983): The Australian Physignathus lesueurii. – Nordisk Herpetologisk Forening, 26 (1): 25-30.



Intellagama lesueurii lesueurii (GRAY, 1831)

Australische Wasseragame / Eastern Water Dragon

ABRAHAM, G. (1981): Das Portrait: Physignathus l. lesueurii (GRAY 1831) – Australische Wasseragame. – Sauria, Berlin, 3 (3): 3-4.

DALY, G. (1992): Aggressive territorial behaviour of free frange water dragons (Physignathus lesueurii lesueurii). – Herpetofauna, Sydnye, 22 (1): 37.

GIDDINGS, S. (1983): Breeding water dragons (Physignathus lesueurii lesueurii and Physignathus lesueurii howitii) in captivity. – South Australian Herpetology GroupNewsletter February, 1980: 2-3.

HARDY, C.J. & C.M. HARDY (1977): Tail regeneration and other observations in a species of agamid lizard. – Australian Zool., 19 (2): 141-148.

LANGERWERF, B. (1999): Die Australische Wasseragame Physignathus lesueurii lesueurii – ein professionell zu züchtendces Terrarientier. – Reptilia, Münster, 4 (6): 32-39.

LANGERWERF, B. & P. MANTEL (1998): Breeding of Physignathus lesueurii lesueurii in outdoor terraria. – Lacerta, 56 (3): 83-89.

SMITH, J. (1979): Notes on incubation and hatching of eggs of the eastern water dragon. – Herpetofauna, Sydney, 10 (2): 12-14.


Intellagama lesueurii howittii MCCOY, 1884

Australische Wasseragame / Gippsland Water Dragon

GIDDINGS, S. (1983): Breeding water dragons (Physignathus lesueurii lesueurii and Physignathus lesueurii howitii) in captivity. – South Australian Herpetology GroupNewsletter February, 1980: 2-3.

McCOY, F. (1884): The Gippsland water lizard. – Prod. Zool. Vict., 9: 7-10.

TURNER, G. (1999): Field observations of Gippsland Water Dragons Physignathus lesueurii howitti sleeping in water. – Herpetofauna (Austr.), 29: 49–51.

zurück / back