Die Arbeitsgemeinschaft Agamen stellt sich vor
DGHT-AG Agamen

Literatur und Schriften


Reptilia: Sauria: Agamidae

ANANJEVA, N.B. (1985): Autotomy and regeneration in agamid lizards. – In: Problems of Herpetology. Abstr. VI, Soviet All.-Union Herp. Conf. Nauka: 8-9. (in Russisch)

ANANJEVA, N.B. (2004): Phylogeny and biogeography of agamid lizards (Agamidae, Lacertilia, Reptilia): Review of modern concepts and results of molecular and morphological studies. – Uspekhi Sovremenno Biologii, 124 (1): 44-56. (in russisch)

ANANJEVA, N.B. (2008): Phylogeny and biogeography of agamid lizards (Agamidae, Acrodonta, Lacertilia, Reptilia): Review of the modern interpretatatios and results of research. - In: Ananjeva, N.B., Danilov, I.G., Dunayev, E.A., Ishchenko, V.G., Lada, G.A., Litvinchuk, S.N., Orlova, V.F., Smirina, E.M., Tuniyev, B.S. & R.G. Khalikov (eds.): The problems of herpetology. – Proceedings of the 3th Meeting of the Nikolsky Herpetological Society, 9-13 October 2006, Ptschino, 16-24. (in russisch)

ANANJEVA, N.B. (2009): Taxonomic, morphological and ecological diversity of Asian agamids (Agamidae: Acrodonta: Sauria: Reptilia). - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 300.

ANANJEVA, N.B. (2010): Agamid lizards: results and perpectives of study of taxonomic and morphological diversity. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 139.

ANANJEVA, N.B., GORDEEV, D.A. & D.V. KOROST (2021): The review of the autotomy of Agamid lizards with considerations about the types of autotomy and regeneration. – J. Developm. Biol., 9: 32.

We present a review of the data on the intervertebral autotomy and regeneration of agamid lizards based on an analysis of information obtained over a 35-year period after the publication of thorough reviews (Arnold, 1984, 1988 and Bellairs, Bryant, 1985). It is supplemented by our own studies of 869 specimens of agamid lizards (Sauria, Agamidae) stored in the herpetological collections of the Zoological Institute of the Russian Academy of Sciences (St. Petersburg, Russia) and the Zoological Museum of the Moscow State University (Moscow, Russia), represented by 31 species of 16 genera. The manifestations of the ability for autotomy and regeneration in phylogenetic lineages within the family—Leiolepidinae, Amphibolurinae, Agaminae, Draconinae—are considered. A comparative morphological analysis of the structure of the caudal vertebrae was carried out using the Computer Microtomography Methods (micro-CT) in the following ecomorphological types of agama: (1) with developed abilities to caudal autotomy and regeneration, (2) with the ability to caudal autotomy but without regeneration and (3) without the ability to autotomy. The phenomenon of intervertebral autotomy (urotomy) in snakes is considered too. Possible ways of evolution of the ability to caudal autotomy as a defense strategy against predators are discussed in the phylogenetic context.

ANANJEVA, N.B., GUO, X. & Y. WANG (2011): Taxonomic diversity of agamid lizards (Reptilia, Sauria, Acrodonta, Agamidae) from China: A comparative analysis. – Asian Herpetological Research, 2 (3): 117-128.

ANANJEVA, N.B., MELNIKOV, D., NAZAROV, R. & N. POYARKOV (2010): Preliminary data on DNA Barcoding of Agaminae with some taxonomical comments. – Abstr. Of the Second Int. Symp. On Agamid lizards, Curr. Studies Herpetol., 10 (3/4): 140-141.

ANANJEVA, N B. & N.L. ORLOV (2008): Agamid lizards (Agamidae, Acrodonta, Sauria) of Vietnam. 1. An annotated list. - Zool. Zh., 87 (3): 306-318. [in Russian with English summary].

The given paper is the first part of a review on the taxonomic diversity, geographic distribution, philogenetic  interrelations, and origin of the main evolutionary lines of agamid lizards from Vietnam. New and refined data on the taxonomic diversity of agamid lizards throughout their range and in the territory of Vietnam are generalized and analyzed. A key for the identification of 22 species of agamid lizards belonging to 3 subfamilies and 9 genera is represented. The fauna of agamid lizards from different regions of South-Eastern Asia is compared.

ANANJEVA, N B. & N.L. ORLOV  (2008): Agamid lizards (Agamidae, Acrodonta, Sauria) of Vietnam. 2. Identification keys. Analysis of distribution in South-East Asia. - Zool. Zh., 87 (4): 435-445 [in Russian with English summary].

The paper contains a review of the author’s and literature results on the species composition, geographic distribution, phylogenetic relationships, and origin of the main evolutionary lineages of agamid lizards from Vietnam. Identification keys with diagnosis for 22 species of 3 subfamilies and 9 genera are given. The taxonomicdiversity of agamids and their evolutionary lineages in different regions of South-Eastern Asia are analyzed. The composition of the agamid fauna in Vietnam, Thailand, Myanma, the Sunda Archipelago, and non-Palearctic China, as well the percentage of endemic and widespread species in the fauna of Vietnam are assessed.

ANANJEVA, N.B., ORLOV, N.L. & N.Q. TRUONG (2007): Agamid lizards (Agamidae, Acrodonta, Sauria, Reptilia) of Vietnam. – Mitt. Mus. Nat. Kd. Berlin, Zool. Reihe 83 Supplement, 13-21.

ARRONET, V.N. (1973): Morphological changes of nuclear structures in the oogenesis of reptiles (Lacertidae, Agamidae). – Journal Herpet., 7 (3): 163-193.

AVERIANOV, A. & I. DANILOV (1996): Agamid lizards (Reptilia, Sauria, Agamidae) from the Early Eocene of Kyrgyzstan. – Neues Jahrbuch für Geologie und Paleontologie Monatshefte, 12: 739-750.

BAHIR, M.M. & T.D. SURASINGHE (2005): A conservation assessmernt of the agamid lizards of Sri Lanka. – In: Yeo, D.C.J., NG, P.K.L. & R. Pethiyagoda (eds.): Contributions to biodiversity exploration and research in Sri Lanka. The Raffles Bulletin of Zoology, Supplement 12: 381-392.

BARTS, M. (1997): Catalogue of valid species and synonyms, Agamidae. – Herprint Int., Bredell, Rsa, 4: 1-416.

BARTS, M. (2003): Die Agamen des südlichen Afrikas. – Draco, Münster, 4 (2): 70-79.

Aufgelistete Arten:

Acanthocercus atricollis, Agama aculeate, Agama anchietae, Agama armata, Agama atra, Agama etoshae, Agama hispida, Agama kirkii, Agama makarikarica, Agama mossambica, Agama planiceps.

BARTS, M. & T. WILMS (1997): Catalogue of valid species and synonyms, Agamidae. – Herprint Int., Bredell, RSA.

BARTS, M. & T. WILMS (2003) Die Agamen der Welt. – Draco, Münster, 4 (2): 4-23. (03.104)

Verbreitung der Agamiden. Anpassung ausgewählter Agamen an besondere Lebensbedingungen. Haltung und Vermehrung von Agamen im Terrarium. Agamen aus tropischen und subtropischen Trockengebieten. Agamen aus den sommerfeuchten und immerfeuchten Tropen. Liste der rezenten Agamen.

BHUPATHY, S. & P. KANNAN (1997): Status of Agamid lizards in the Western Ghats. – Technical Report No. 5 Salim Ali Centre for Ornithology and Natural History, Coimbatore. 27 S.

BÖHME, W. (2010): Agamid lizards crossing the way of 60 years of herpetology in the Museum Alexander Koenig, Bonn. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 141–142.

BOULENGER, G.A. (1885): Catalogue of the lizards on the British Museum (Natural History). I. Geckonidae, Eublepharidae, Uroplatidae, Pygopodidae, Agamidae. – London (Taylor & Francis). 436 S.

BRYGOO, E.R. (1988): Les types d’Agamidés (Reptiles, Sauriens) du Muséum national d’Histoire naturelle. Catalogue critique. – Bull.Mus. nation. Hist. Nat. Paris, 10 4 sér.; 1-56.

BUEHLER, M.D., ZOLJARGAL, P., PURVEE, E., MUNKHBAYAR, K., MUNKHBAATAR,M., BATSAIKHAN, N., ANANJEVA, N.B., ORLOV, N.L., PAPENFUSS, T.J., ROLDÁN-PINA, D., GRISMER, D.L.L., OAKS, J.R., BROWN, R.M. & J.L. GRISMER (2021): The Results of Four Recent Joint Expeditions to the Gobi Desert: Lacertids and Agamids. – Russian Journal of Herpetology, 28 (1): 15-32.

The National University of Mongolia, the Mongolian State University of Education, the University of Nebraska, and the University of Kansas conducted four collaborative expeditions between 2010 and 2014, resulting in accounts for all species of lacertid and agamid, except Phrynocephalus kulagini. These expeditions resulted in a range extension for Eremias arguta and the collection of specimens and tissues across 134 unique localities. In this paper we summarize the species of the Agamidae (Paralaudakia stoliczkana, Ph. hispidus, Ph. helioscopus, and Ph. versicolor) and Lacertidae (E. argus, E. arguta, E. dzungarica, E. multiocellata, E. przewalskii, and E. vermiculata) that were collected during these four expeditions. Further, we provide a summary of all species within these two families in Mongolia. Finally, we discuss issues of Wallacean and Linnaean shortfalls for the herpetofauna of the Mongolian Gobi Desert, and provide future directions for studies of community assemblages and population genetics of reptile species in the region.

BURMANN, A., WAGNER, P., MISOF, B., HAASE, M. & W. BÖHME (2009): Phylogeography & taxonomy of the Agamid lizards (Sauria: Agamidae) of East Africa: morphological and genetic analysis. - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 304.

CHEN, I.-P., STUART-FOX, D., HUGALL, A.F. & M.R.E. SYMONDDS (2012): Sexual selection and the evolution of complex color patterns on Dragon Lizards. – Evolution, 2012: DOI: 10.1111/j.1558-5646.2012.01698.x

Many species have elaborate and complex coloration and patterning, which often differ between the sexes. Sexual selection may increase the size or intensity of color patches (elaboration) in one sex or drive the evolution of novel signal elements (innovation). The latter potentially increases color pattern complexity. Color pattern complexity may also be influenced by ecological factors related to predation and environment; however, very few studies have investigated the effects of both sexual and natural selection on color pattern complexity across species. We used a phylogenetic comparative approach to examine these effects in 85 species and subspecies of Australian dragon lizards (family Agamidae). We quantified color pattern complexity by adapting the Shannon–Wiener diversity index. There were clear sex differences in color pattern complexity, which were positively correlated with both sexual dichromatism and sexual size dimorphism, consistent with the idea that sexual selection plays a significant role in the evolution of color pattern complexity. By contrast, we found little evidence of a link between environmental factors and color pattern complexity on body regions exposed to predators. Our results suggest that sexual selection rather than natural selection has led to increased color pattern complexity in males.

COOPER, J.S., POOLE, D.F.G. & R. LAWSON (1970): The dentition of agamid lizards with special reference to tooth replacement. – J. Zool., London, 162: 85-98.

COOPER Jr., W.E., WHITING, M.J., VAN WYK, J.H., MOUTON, P.I. & F.N. MOUTON (1999): Movement and attack – based indices of foraging mode and ambush foraging im some gekkonid and agamid lizards from southern Africa. – Amphibia-Reptilia, 20: 391-399.

COVACEVICH, J., COUPER, P., MOLNAR, R.E., WITTEN, G. & W. YOUNG (1990): Miocene dragons from Riversleigh: new data on the history of the family Agamidae (Reptilia: Squamata) in Australia. – Mem. Queensland Mus., 29: 339-360.

DENZER, W., GÜNTHER, R. & U. MANTHEY (1997): Kommentierter Typenkatalog der Agamen des Museums für Naturkunde der Humbold-Universität zu Berlin (ehemals Zoologisches Museum Berlin). – Mitt. Zool. Mus. Berlin, 73 (2): 309-332.

ELLIS, R.J. (2019): An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum. – Rec. West. Aust. Mus., 34: 115-132.

The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum.

EVEN, E. (2020): Sri Lanka: op zoek naar endemische agamen en andere herpetologische waarnemingen. – Lacerta, 78 (4): 92-123.

FONTEIJNE, J.J. de la (1960): Agamen. – Lacerta, 18: 57-58.

FRANKENBERG, E. & Y. WERNER (1992) Egg, clutch and maternal sizes in lizards: Intra- and interspecific relations in near-eastern Agamidae and Lacertidae. – Herpetological Journal, 2: 7-18. (01.001)

We provide data on the fecundity of locally common Israeli reptiles, und use these data to examine current ideas on the reproductive ecology of lizards. Our methodology was selected in consideration of the acute problems of nature conservation in Israel. In the museum collections of the Hebrew University of Jerusalem and Tel Aviv University we used radiography to locate the shelled oviductal eggs of 164 female lizards, belonging to eleven species (Agamidae and Lacertidae). Each sample sums the species´ variation over its range and over different years. Female body size, egg number and egg volume were determined. Specific clutch columes, relative to maternal body lengths, resembled those reported in iguanid lizards from tropical America. Clutch size varied intraspecifically and, in most species, correlated to maternal size. In others, egg size was more influenced by maternal size. We argue that the latter species oviposit in more stable environments than do the majority.

FRITZ, J.P. & F. SCHÜTTE (1988): Agamen aus der Arabischen Republik Jemen. - Bonn. zool. Beitr., Bonn, 39 (2/3): 103-112. (00.281)

GAUTHIER, R. (1956): Note sur trois Agames du Sahara occidental. – Bull. Soc. Hist. nat. Afr. N., 47 (5-6): 137-146.

GLAUERT, L. (1959): Herpetological miscellanea. X. Dragon lizards (family Agamidae). – W. Aust. Nat., 7: 10-19.

GONÇALVES, D.V., BRITO, J.C., CROCHET, P.-A., GENIEZ, P., PADIAL, J.M. & D.J. HARRIS (2012): Phylogeny of North African Agama lizards (Reptilia: Agamidae) and the role of the Sahara desert in vertebrate speciation. - Molecular Phylogenetics and Evolution 64: 582-591.

The origin of Saharan biodiversity is poorly understood, in part because the geological and paleoclimatic events that presumably shaped species diversity are still controversial, but also because few studies have explored causal explanations for the origin of Saharan diversity using a phylogenetic framework. Here, we use mtDNA (16S and ND4 genes) and nDNA (MC1R and CMOS genes) to infer the relationships and biogeographic history of North African agamas (genus Agama). Agamas are conspicuous, diverse and abundant African lizards that also occur in the Saharan xeric and mesic environments. Our results revealed the presence of three Agama lineages in North Africa: one Afrotropical, one Sahelo-Saharan, and one broadly distributed in North Africa and mainly Saharan. Southern Mauritania contains the high[1]est known diversity, with all three lineages present. Results suggest that agamas colonized the Sahara twice, but only one lineage was able to radiate and diversify there. Species in the Saharan lineage are mostly allopatric, and their splitting, genetic diversity and distribution are greatly explained by mountain ranges. One species in this lineage has colonized the Mediterranean climatic zone (A. impalearis), and another one the Sahel savannah (A. boueti). The other lineage to colonize the Sahara corresponds to A. boulengeri, an eminently Sahelian species that also inhabits Saharan mountain ranges in Mauritania and Mali. Phylogenetic analyses indicate that allopatric montane populations within some currently rec[1]ognized species are also genetically divergent. Our study therefore concludes that vicariant speciation is a leading motor of species diversification in the area: Inside the Sahara, associated to mountain-ranges iso[1]lated by dune seas and bare plains; outside, associated to less harsh climates to the North and South. Paleoclimatic oscillations are suggested as causal explanations of the vicariant distribution and origin of species. Agamas are thought to have colonized northern Africa during wet periods, with subsequent dry periods fragmenting species distribution and leading to allopatric populations associated to milder and wetter climates in the Mediterranean, Sahel, and in Saharan mountains, in an island-model fashion. Finally, our results support the synonymization of A. castroviejoi with A. boueti, the reciprocal monophyly of all other North African agamas, and suggest one candidate species within A. boulengeri.

GONÇALVES, D.V., PEREIRA, P., VELO-ANTÓN, G., HARRIS, J., CARRANZA, S. & J.C. BRITO (2018): Assessing the role of aridity-induced vicariance and ecological divergence in species diversification in North-West Africa using Agamid lizards. – Biol. J. Linn. Soc., 124: 363-380.

Diversification events in the Sahara–Sahel have mostly been attributed to regional aridification and subsequent arid–humid fluctuations, through vicariance or adaptation. However, no study has attempted to test these contrasting hypotheses. Here, we assess the importance of aridity-induced vicariance (as opposed to adaptation to new conditions) on diversification processes in North-West African Agama lizards. To test the hypothesis of vicariance as the main driver of diversification, we assessed the occurrence of the following three patterns expected to occur under the proposed scenario: (1) prevalent allopatric or parapatric distributions; (2) allopatric climatic refugia coincident with current distributions; and (3) niche similarity decreasing with increasing phylogenetic distance. We also reconstructed the centre of origin and range expansion dynamics for the Sahelian species to verify the congruence of the genetic signal with the vicariance scenario. All patterns expected from a neutral, non-adaptive niche divergence scenario were present. The diffusion models for the Sahelian species identified similar points of origin, corresponding to the areas of highest genetic diversity, topographic heterogeneity and climatic stability. Other patterns, such as mountain-isolated lineages, also indicate isolation by aridity. Our results support vicariance as the main driver of diversification in NW African Agama at both large and local scales. The importance of southern Mauritania for the conservation of biodiversity and the evolutionary process is highlighted.

GORDEEV, D.A. & N.B. ANANJEVA (2021): Variations in the capacity of autotomy an regeneration in phylogenetic trees of agamid lizards (Agamidae, Reptilia, Squamata). - In: Dunayev, E.A. & N.A. Poyarkov et al. (ed.): Problems of Herpetology Program and abstracts of the VIII congress of the A.M. Nikolsky Herpetological Society (NHS) of the Russian Academy of Sciences “Current herpetological research in Eurasia” October 3-9. 2021. Moscow. pp. 75-77. (in Russisch)

GORMAN, G.C. & D. SHOCHAT (1972): A taxonomical interpretation of chromosomal and electrophoretic data on the agamid lizards of Israel with notes on some East African species. – Herpetologica, 28: 106-112.

GRAY, J.A. (2018): Skull Evolution in the Australian Dragon Lizards. Dissertation. University of Adelaide. 211 pp.

HALLERMANN, J. (2005): Mit Hörnern, Kämmen und Gleithäuten – die bizarren Baumagamen. – Reptilia, Münster, 10 (1): 18-25.

Aufgelistete Arten:
Acanthosaura armata, Acanthosaura lepidogaster, Aphaniotis acutirostris, Bronchocela celebensis, Bronchocela cristatella, Bronchocela hayeki, Bronchocela orlovi, Calotes, calotes, Calotes grandisquamis, Calotes kinabaluensis, Calotes mystaceus, Calotes nigriplicatus, Calotes versicolor, Ceratophora erdeneni, Ceratophora karu, Ceratophora tennentii, Cophotis ceylanica, Cophotis ceylonensis, Coryphophylax subcristatus, Dendragama boulengeri, Draco maculatus haasii, Draco tenuiopterus, Gonocephalus chamaeleontinus, Japalura splendida, Japalura tricarinata, Japalura variegata, Lophocalotes ludikingii, Lyriocephalus scutatus, Mantheyus phuwuanensis, Micropholis austeniana, Oriocalotes paulus, Otocryptis wiegmanni, Phoxophrys nigrilabris, Physignatrhus cocincinus,Physignathus lesueurii, Pseudocalotes tympanistriga, Ptyctolaemus gularis, Ptyctolaemus collicristatus, Sitana ponticeriana.

HARLOW, P.S. (2001): The ecology of sex-determining mechanisms in Australian agamid lizards. Unpublished Ph.D Thesis, Macquarie University.

HASSAN, H.A. (1996): Chromosomal studies of four Egyptian lizards of the families Agamidae and Scincidae. – Cytologia, Tokyo, 61 (4): 443-455.

HEALEY, M., ULLER, T. & T. OLSSON (2007): Seeing red: morph-specific contest success and survival rates in colour-polymorphic agamid lizard. – Anim. Behav., 74: 337-341.

HEIJDEN, F. van der (1971): De verwantschap tussen Agamidae en Iguanidae. - Lacerta, 29: 75-81. (00.302)

HENKE, J. (1974): Vergleichend-morphologische Untersuchungen am Magen-Darm-Trakt der Agamidae und Iguanidae (Reptilia:Lacertidae). – Dissertation, Universität Kiel. 75 S.

HENKE, J. (1975): Vergleichend-morphologische Untersuchungen am Magen-Darm-Trakt der Agamidae und Iguanidae. - Zool. Jb. Anat., 94: 505-569. (00.303)

HENKEL, F.W. & W. SCHMIDT (1997): Agamen im Terrarium. – Landbuch Verlag, Hannover. 151 S.

HERTZ, P.E., HUEY, R.B. & E. NEVO (1983): Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. – Evolution, 37: 1075-1084.

HERTZ, P.E. & E. NEVO (1981): Summer thermal biology of four agamid lizard species in Israel. – Israel Journal of Zoology, 30: 190-210.

HILLER, U. (1995): Ultrastructural studies on the conjunctiva in agamid lizards. – Annals of Anatomy, 177 (6): 553-562.

HINGLEY, K.J. (1990): After the tourists have gone (the Agamas come out to play). - The Vivarium, 2 (4): 25-27. (00.321)

HOCKNULL, S.A. (2002): Comparative maxillary and dentary morphology of the Australian dragons (Agamidae: Squamata): A framework for fossil identification. - Memoirs of the Queensland Museum 48 (1): 125-145.

The maxilla, particularly its anterior portion, and dentary of extant Australian agamids, excluding Cryptagama and Hypsilurus, provide a framework for identification of fossil agamids. Juvenile agamids can be distinguished from adults on their pleurodont teeth relative to the first acrodont tooth, a posterior-most acrodont tooth that is the largest in the tooth row, and acrodont teeth with translucent margins. Sexual dimorphism occurs in Ctenophorus maculatus, C. pictus and Tympanocryptis intima, which have distinctly larger maxillary caniniform pleurodont teeth in males than in females. Amphibolurus, Lophognathus, Caimanops, Chlamydosaurus and Diporiphora share many features including, an angular dorsal maxillary process and reduced naris ridge. Amphibolurus shares most features with Lophognathus gilberti and Lophogna thus temporalis. Caimanops is morphologically similar to Chlamydosaurus, but is smaller and Diporiphora is similar to Amphibolurus nobbi, but smaller. Tympanocryptis differs from Rankinia by its caniniform pleurodont dentition. The Ctenophorus reticulatus species group is closest to Pogona, possessing rounded maxillary and dentary acrodont dentition. Physignathus and Chelosania share more features with each other than with other Australian agamids. Moloch shares many features with Tympanocryptis, including the vertical dorsal maxillary process and angled maxillary acrodont teeth. Although Moloch has many derived features of the maxillae and dentary, it also has features of the more plesiomorphic Physignathus and Chelosania.

HONDA, M., OTA, H., KOBAYASHI, M., NABHITABHATA, J., YONG, H.S., SENGOKU, S. & T. HIKIDA (2000): Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from mitochondrial DNA sequences. – Zoological Science, 17 (4): 527-537.

HÖRCHNER, F. (1963): Zur Parasitenfauna der Chameleontidae und Agamidae (Squamata). – Z. Parasitenk., 22 (6): 537-544.

Es wurden insgesamt 76 Chamaeleontiden (51 Chameleon biteniatus BUCH, 7 Ch. jacksoni GR., 5 Ch. fischeri REICHENOW, 4 Ch. dilepis LEACH, 1 Ch. oustaleti MOCA., 8 Chameleon spp.) sowie 6 Agamen (2 Agama hispida L. und 4 Agama spp. parasitologisch untersucht.

Bei Chameleons wurden Oochoristica agamae BAYLIS, 1919 (Linstowiidae), Africana anticeps GEDOELST, 1916 (Heterakidae), sowie Abbreviata sp. (Physlopteridae) festgestellt. Als neue Art wurde Oswaldocruzia chameleonis n. sp. (Trichostrongylidae) gefunden und beschrieben. Bei Agamen wurden Oochoristica agamae BAYLIS, 1919, Strongyluris brevicaudata MUELLER, 1894 und Abbreviata baylisi CHABANAUD (Physalopteridae) gefunden.

HÖRCHNER, F. & H. WEISSENBURG (1965): Drei neue Physalopteroden-Arten aus Agamiden (Squamata) Zentralafrikas. – Zeitschrift für Parasitenkunde, 25: 491-500.

HORA, S.L. (1926): Notes on lizards in the Indian Museum: II. On the unnamed collection of lizards of the family Agamidae. – Records of the Indian Museum, 28: 215-220.

HUGALL, A., FOSTER, R., HUTCHINSON, M. & M.S.Y. LEE (2008): Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. – Biological Journal of the Linnean Society, 93: 343-358.

HUGALL, A.F. & M.S.Y. LEE (2004): Molecular claims of gondwanan age for Australian Agamid lizards are untenable. – Molec. Biol. Evol., 21 (11): 2102-2110.

A recent mtDNA study proposes a surprisingly deep (;150 MYA) divergence between SE Asian and Australasian agamid lizards, consistent with ancient Gondwanan vicariance rather than dispersal across the Indonesian Archipelago. However, the analysis contains a fundamental error: use of rates of molecular evolution inferred from uncorrected sequence divergence to put a time frame on a tree with branch lengths greatly elongated by complex likelihood and ratesmoothing models. Furthermore, this date implies that basal splits within agamids occurred implausibly early, at least 300 MYA (100 Myr before the first fossil lizards and coincident with the earliest fossil reptiles). Analyses of the mtDNA data using more appropriate methods and new information from nuclear (c-mos) sequences suggest a much more recent divergence between SE Asian and Australian agamids (around 30 MYA). Using two fossil boundary dates, bootstrapping the c-mos data gives a 95% confidence interval for this divergence time that is sufficiently recent (14–41 MYA) to exclude an ancient Gondwanan vicariance and is more consistent with Miocene over-water dispersal. As with the mtDNA, the c-mos data implies implausibly old basal divergences among agamids if a Gondwanan age is assumed for the Australasian clade. The analyses also highlight how methods for creating ultrametric trees (especially nonparametric rate smoothing) can greatly modify branch lengths and, thus, always require internal calibrations. The errors associated with inferred dates in the previous study (inferred through parametric bootstrapping) were also unjustifiably low, as this method only considers stochasticity in the substitution model and ignores much larger sources of uncertainty, such as variation in character sampling, tree topology, and calibration accuracy.

ISHWAR, N.M., CHELLAM, R., KUMAR, A. & B.R. NOON (2003): The response of agamid lizards to rainforest fragmentation, in the Southern Western Ghats, India. – Cons. Soc., New Delhi, 1 (2): 69-86.

JANZEN, P., KLAAS, P. & S. ZIESMANN (2007): Die Agamenfauna der Insel. – Draco, Münster, 8 (2): 24-33.

Endemische Schönechsen / Hornagamen / Taubagamen / Otocryptis und andere Agamen / Gefährdung / Haltung und Nachzucht.

JOGER, U. (1979): Zur Ökologie und Verbreitung wenig bekannter Agamen Westafrikas (Reptilia: Sauria: Agamidae). – Salamandra, Frankfurt/Main, 15 (1): 31-52. (00.034)

Die noch sehr ungenügenden ökologischen und zoogeographischen Kenntnisse über die Agamen der westafrikanischen Savanne soll diese Studie erweitern helfen. Die vier hier behandelten Arten erweisen sich in bezug auf ihren bevorzugten Biotop als stenök und allotop. Sie weichen der zwischenartlichen Konkurrenz durch ökologische Sonderung aus.
Agama boueti bestätigt sich durch den Neunachweis aus der Republik Niger als Bewohner sandiger Flächen zwischen dem Südrand der Sahara und dem Übergangsgebiet Sahel-/Sudan-Savanne. Die südlich daran anschließenden offenen Landschaften werden von A. sankaranica bewohnt. Die myrmecophage Zwergform A. weidholzi löst A. sankaranica auf dem laubbedeckten Boden der Trockenwälder zwischen dem Oberlauf des Niger und der Casamance ab. Agama boulengeri ist ein Endemit der variskischen Faltungsgebiete zwischen dem mauretanischen Adrar und dem oberen Senegal, wo die Art sich njur auf trockenheißen Felsplateaus gegen die ähnlich eingenischte A. agama behaupten kann.
Die beobachtete Aufnahme sukkulenter Pflanzenteile durch A. boulengeri und A. boueti wird als Anpassung an das Leben in Trockenbiotopen gedeutet, was durch die Tatsache gestützt wird, daß A. boueti im feuchten Küstengebiet keine Pflanzennahrung aufnimmt.
Die bodenlebenden Arten sind solitär, A. boulengeri zeigt Ansätze zu sozialer Gruppenbildung.
Die Fortpflanzung scheint bei allen Arten in der Regenzeit zu erfolgen, doch fehlen exakte Belege.
Zahlreiche Probleme harren noch ihrer Lösung, so zum Beispiel bei A.weidholzi die Bedeutung der auffälligen Farbmale und das augenscheinliche Fehlen von Adulten in der Trockenzeit.

JOGER, U. (1991): A molecular phylogeny of agamid lizards. – Copeia, 1991 (3): 616-622.

KAMAL, A.M. & S.K. ZADA (1970): The phylogenetic position of the family Agamidae in the light of the study of the chondrocrasnium. – Zool. Anz., 184: 327-335.

KAMALOVA, Z.Y. (1977): The age distribution of lizard populations of the family Agamidae in Central Asia. – In: Darevskij, I.S. (ed.): Fourth all-Union Herpetological Conference. Questions of Herpetology. – Akydemiya Nauk SSSR, Zoologicheskij Institut. Izdatel´stvo ´Naiuka´. Leningard. 107-108.

KANDAMBY, D.S: (1994): Preliminary report of snakes and agamid lizards in Galle district. – Lyriocephalus, 1 (1-2): 44-47.

KHAN, M.Z. & N. MAHMOOD (2004): Study of population status and natural history of Agamid lizards of Karachi. – Pakistan Journal of Biological Sciences, 7 (11): 1942-1945.

KIEHLMANN, D. & I. KIEHLMANN (1985): Todesfälle bei Agamen durch die Verabreichung von Kalziumlaktat imTrinkwasser. - herpetofauna, 7 (39): 6-7. (00.327)

KUNZ, K. (2003): Agamen als Biomedizin. – Draco, Münster, 4 (2): 96.

KUPRIYANOVA, L.A. (1984): Karyotypes of 3 species of agamid lizards – Ecology and faunistic of amphibians and reptiles of USSR and adjacent countries. – Proceedings of the Zoological Institute of the Academy of Sciences, USSR, 124: 115-118.

LAPID, R. & Y.L. WERNER (1991): Tail regeneration in agamas. – In: Gabrisch, K., Schildger, B. & P. Zwart (eds.): 4th International Colloquium on Pathology and Medicine of Reptiles and Amphibians, Bad Nauheim, Germany. Giessen: Deutsche Veterinaermedizinische Gesellschaft Addendum.

LISLE, H.F. de, RAW, L.R.G. & D.A. MELNIKOV (2016): Agamidae – A catalogue of recent species. – 220 pp.

LIESACK, H. (1999): Haltung und Vermehrung verschiedener Agamenarten. – 2. VDA-Terraristik-Symposium, Humboldtrose 1912 e.V., Berlin. 21-27.

LYNN, W.G., O´BRIEN, M.C. & P. HERHENREADER (1966): Thyroid morphology in lizards of the families Iguanidae and Agamidae. – Herpetologica, 22: 90-93.

MacDONALD, M.A. (1981): A new species of agamid lizard from Ghana. – J. Zool. London, 193: 191-199.

MANAMENDRA-ARACHHI, K. (1990): A guide to the Agamids in Sri Lanka. – Occ. Pap. Young Zool. Assoc. Sri Lanka, 5: 1-8.

MANAMENDRA-ARACHHI, K. & S. LIYANAGE (1994): Conservation and distribution of the agamid lizards of Sri Lanka with illustrations of the extant species. – Journal of South Asian Natural History, 1 (1): 77-96.

MANTHEY, U. & W. DENZER (2019): Seltene Bergagamen des Kinabaluparks (Sabah, Nordborneo) oberhalb von 900 m ü.d.M.) – Sauria, Berlin, 41 (1): 1-12.

MANTHEY, U. & N. SCHUSTER (1992): Agamen. – Heselhaus Verflag.120 S.

MANTHEY, U. & N. SCHUSTER (1996): Agamid Lizards. – T.F.H., Neptune City. 189 S.

MANZANELL, R. (1982): Oswaldofilaria spp (Filarioidea, Nematoda) in Australian agamid lizards with a description of a new species and a redescription of O. chlamydosauri (Breinl). – Annales de Parasitologie Humaine et Comparee, 57 (2): 127-143.

MARKOV, G.S., RUSTAMOV, A.K., PINYASOVA, R.M., RADCHENKO, N.M. & O. SOPIEV (1971): Prevalence of nematode-oxyurids in mountaineous Agamae of south-east Turkmenia. – Izvestiya Akad. Nauk Turkmen. SSR (Biol.), 1971 (1): 59-63. (in Russisch)

MATVEYEVA, T.N. & N.B. ANANJEVA (1995): The distribution and number of the skin sense organs of agamid, iguanid and gekkonid lizards. – J. Zool., 235: 253-268.

The topography and numerical distribution of the skin receptors in 29 lizard species including 18 agamids, eight iguanids and three gekkonids, are compared and contrasted. There are no marked differences in the number of receptors in the dorsal and ventral surfaces of the body in the different groups. The maximal density of the receptors occurs on the head and decreases in the caudal direction. Iguanids and gekkonids have 5-6 times more receptors than agamids. Agamids Gonocephalus grandis from S.E. Asia, Pogona barbata, Diporiphora bilineata from Australia and Ceratophora tennentii from Sri-Lanka, however, are distinguished by their high density of receptors, especially on the head. Species of Physignathus are similar to iguanids in this way. The agamid Phrynocephalus mystaceus shows considerable differences, in receptor number, from other species of this genus. There is a high density of receptors on the caudal scales of the Madagascan iguanid Oplurus, and a similar high density of receptors on the ventral surface of the gecko Terat oscincus scincus.

MEDIANNIKOV, O., TRAPE, S., MANE, Y. & J.-F. TRAPE (2010): West African agamas: systematics, geographic distribution, ecology and phylogeny. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 148.

MELL, R. (1950): Agamiden teilen den Erdraum unter sich. - Die Aquar. Terrar. Z., Stuttgart, 3 (3): 41-43. (00.329)

MELVILLE, J. (2009): Australian Agamid lizards: an overview of species diversity, biogeography and evolutionary relationships. - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 302.

MELVILLE, J., HALE, J., MANTZIOU, G., ANANJEVA, N.B., MILTO, K. & N. CLEMANN (2009): Historical biogeography, phylogenetic relationships and intraspecific diversity of agamid lizards in the Central Asian deserts of Kazakhstan and Uzbekistan. – Molecular Phylogenetics and Evolution, 53: 99-112.

MELVILLE, J., RITCHIE, E.G., CHAPPLE, S.N., GLOR, R.E. & J.A. SCHULTE II (2011): Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas. - Molec. Phylogen. Evol., 58: 257–270.

Australia’s monsoonal tropics are dominated by the largest and least modified savanna woodlands in the world, and they are globally significant for their high biodiversity and regional endemism. Despite this, there have been very few molecular studies of the evolutionary origins and diversification of vertebrates in this region. The semi-arboreal dragon lizards of Lophognathus and Amphibolurus are widely distributed in the savanna and dry sclerophyll woodlands of Australasia, including the monsoon tropics. We sequenced a _1400 bp region of mitochondrial DNA and a _1400 bp nuclear gene (RAG1) to investigate the phylogenetic relationships and phylogeographic structuring of all seven species of Lophognathus and Amphibolurus. Our analyses show that there is a higher level of species and generic diversity in the monsoon tropics than previously thought, and a full morphological review and taxonomic revision of these genera is required. Relaxed molecular clock analyses indicate that species across both genera originated in the late Miocene and early Pliocene, with significant phylogeographic structure within species. We did not find any evidence that the monsoon tropics species were a monophyletic group that had diversified within the region; instead Amphibolurus and Lophognathus represent at least three independent evolutionary colonizations of the monsoon tropics. It is probable that the origins and phylogeographic patterns of the northern Lophognathus species have evolved under the climatic influence of the Australian monsoon, rather than being either an ancient Gondwanan lineage that pre-dates the monsoon or the result of a more recent dispersal event across Wallace’s Line.

MELVILLE, J. & J.A. SCHULTE II (2001): Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards. – Austral Ecol., 26: 660-669.

Body temperatures of active lizards and their correspondence with microhabitat occupation were studied for nine species of agamid lizards in the central Australian arid zone. Thermoregulatory behaviour was also documented using several measures, such as the use of shade and perch height. The effects of thermal environment on lizard habitat occupation were hypothesized to be significant, because desert regions experience daily and seasonal extremes of temperature that are well in excess of a lizard’s preferred temperature range. All species, except Ctenophorus isolepis and Diporiphora winneckei, were found to have body temperatures that corresponded closely to ground and surface temperatures. Thermoregulatory behaviour was also found to be important throughout a lizard’s daily activity; all study species, other than Ctenophorus isolepis, were found to increase their perch height in the middle of the day. Ctenophorus isolepis was shown to be a strictly terrestrial species that uses the shade of spinifex in its thermoregulatory behaviour. Species exhibited a non-random selection of microhabitats and a preference for a particular set of thermal and structural factors. In this study, it was shown that structural factors were particularly important in microhabitat occupation. Thermal factors accounted for a smaller proportion of variance in microhabitat occupation, but still played a considerable role in the microhabitat use in central Australian agamids.

MESZOELY, C.A.M. & M. GASPARIK (2002): First record of an agamid lizard from the Pleistocene of Hungary. – Fragment Palaeontologica Hungarica, Budapest, 20: 1-2.

In 1998 a small fragment of an agamid lizard mandible was discovered among the reptile bones from the locality of Tokod. It is the first agamid remain from the Pleistocene of Hungary. The presence of this taxon indicates a warm interglacial climate and raises the possibility that the age of the locality is Eemian, i.e. older than previously thought.

MILTO, K. (2009): Distribution patterns of agamids in the North Caspian region. - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 303-304.

MILTO, K.D. & A.V. BARABANOV (2012): A Catalogue of the Agamid and Chamaeleonid Types in the Collection of the Zoological Institute, Russian Academy of Sciences, St. Petersburg. - Russ. J. Herpetol., 19 (2): 155-170.

A complete catalogue of the type specimens of agamid and chamaeleonid lizards in the herpetological collection of the Zoological Institute, Russian Academy of Sciences, St. Petersburg is provided. The collection contains 1098 type specimens representing 105 taxa of these lizards. Of these taxa 58 ones are currently recognized as valid species or subspecies.

MOODY, S.M. (1980): Phylogenetic and historical biogeographical relationships of the genera in the family Agamidae. – Ph.D. Thesis Univ. Michigan, Ann Arbor. 373 S.

MOODY, S.M. (2009): Viviparity in the family Agamidae. - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 302.

MURPHY, R.W., CHE, J., JIN, J.Q., GRAZZIOTIN, F.B., NGUYEN, S.N., ORLOV, N.N., ANANJEVA, N.B. & Y.P. ZHANG (2010): Barcoding agamid lizards of Vietnam. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 151.

NJOKU-OBI, A.N., GUGNANI, H.C. & J.U. OGUIKE (1976): Bacterial flora of agamid lizards in eastern Nigeria with special reference to enteropathogens. – Journal communble Dis., 8 (4): 299-301.

NNEJI, L.M., ADEOLA, A.C., YAN, F., OKEYOYIN, A.O., OLADIPO, O.C., OLAGUNJU, T.E., OMOTOSO, O., OLADIPO, S.O., IYIOLA, O.A., AUTA, T., USMAN, A.D.ABDULLAHI, H., PENG, M.-S., JIN, J.-O., MURPHY, R.W., UGWUMBA, A.A.A. & J. CHE (2018): Cryptic Lineages of Nigerian Agama (Squamata: Agamidae) within the West African Radiation. – Russian Journal of Herpetology, 25 (2): 97-112.

The genus Agama is diverse and found commonly in Africa. The dearth of herpetological studies in Nigeria has limited knowledge on the genetic diversity and distribution of Agama and the matrilineal affinities within the West African (WA) radiation. This limits an understanding of the biogeography of West Africa. Thus, we collected 112 specimens of Agama across Nigeria. Analyses of mitochondrial DNA (16S rRNA sequences) infer the matrilineal relationships of all the currently recognized Nigerian species of Agama within the WA radiation. The result of our genealogical analysis adds a new matrilineal lineage from north-eastern Nigeria to the WA radiation. Further, our result shows that Nigerian Agama has closest relationship with Cameroon and Niger. This indicates that the Guinean forest may be a biogeographic corridor for dispersal and diversification. Our collections from Nigeria also first document the presence of A. parafricana from the montane savannah region of Gashaka Gumti National Park, eastern Nigeria. Accordingly, we describe its external features.

OLIVER, S.C., JAMIESON, B.G.M. & D.M. SCHELTINGA (1996): The ultrastructure of spermatozoa of Squamata. 2. Agamidae, Varanidae, Colubridae, Elapidae, and Boidae (Reptilia). – Herpetologica, 52 (2): 216-241.

PANOV, E.N. & L.Y. ZYKOVA (2016): Rock Agamas of Eurasia. KMK Scientific Press, Moscow. 326 pp.

PETERS, U. (1972): Agamen im mittleren Neusüdwales. – Die Aquar. Terrar. Z., Stuttgart, 25: 320-321.

PETERS, U. (1985): Australische Agamen. - Aquarien Terrarien, Leipzig, 32 (1): 30-33. (00.331)

PETERS, U.W. (1986): Wir stellen vor: Agamen aus Australien. – Das Aquarium, 207: 489-496.

PRASAD, G.V.R. & S. BAJPAI (2008): Agamid Lizards from the Early Eocene of Western India: Oldest Cenozoic Lizards from South Asia. - Palaeontologia Electronica 11 (1): 4A 19 pp.

The discovery of agamid lizards from the Lower Eocene (ca. 53 Ma) deposits of Vastan Lignite Mine, western India, is reported, based on a number of dentaries and one maxilla. There are at least two distinct sets of dentary bones with varying morphologies, indicating the presence of two different taxa, Vastanagama susani gen. et sp. nov. and Tinosaurus indicus sp. nov. The new finds represent the oldest known occurrence of agamid lizards in the Cenozoic of South Asia. Though tricuspid, the teeth on the dentaries and maxilla of V. susani gen. et sp. nov. and T. indicus sp. nov. Appear more closely related to Tikiguania estesi, a Late Triassic taxon from India, than to the various species of Tinosaurus known from the Paleogene of North America, Europe and Asia. Differences include the development of lateral cuspules on the posterior teeth and the presence of a broad, flat or convex platform-like subdental ridge on the dentaries of V. susani gen. et sp. nov. The significance of these fossils in the context of ‘Out-of-India’ and ‘In-to-India’ paleobiogeographic hypotheses is discussed.

RANAWANA, K.B. & C.N.B. BAMBARADENIYA (1998): Agamid lizards in three montane zone protected areas of Sri Lanka. – Proc. Internat. Conf. Biol. Conserv. Amphiians and Reptiles of South Asia, August 1-5, 1996, 1998.

ROGIER, E. (1977): Description et cycle biologique de Schellackia agamae (Laveran et Petitt 1909), Lankesterellidae parasite d´agames de Republique Centre Africaine. – Protistologica, 13 (1): 9-13.

ROITBERG, E.S., MAZANAEVA, L.F., ILYINA, E.V. & V.F. ORLOVA (2000): Die Echsen Dagestans (Nordkaukasus, Russland): Artenliste und aktuelle Verbreitungsdaten (Reptilia: Sauria: Gekkonidae, Agamidae, Anguidae, Scincidae et Lacertidae). – Faun. Abh. Staatl. Mus. Tierkde. Dresden, 22 (8): 95-116. (11-30)

Die Echsenfauna Dagestans (südöstlicher Nordkaukasus, Russland) umfaßt 17 Arten, welche neun Gattungen in fünf Familien angehören (Gekkonidae – 1, Agamidae – 4, Anguidae – 2, Scincidae – 1 und Lacertidae – 9 Arten). Für jede Art wurden detaillierte Verbreitungskarten mit Katastern in Dagestan (50300 km²erstellt. Einige Angaben zu den Habitaten, zur Häufigkeit sowie über die lokale Arealdynamik werden ebenfalls mitgeteilt.

Agamidae: Trapelus sanguinolentus, Laudakia caucasia, Phrynocephalus mystaceus, Phrynocephalus guttatus. Anguidae: Pseudopus apodus, Anguis fragilis. Gekkonidae: Cyrtopodion caspius. Lacertidae: Eremias velox, Eremias arguta, Lacerta strigata, Lacerta agilis boemica, Lacerta media, Lacerta praticola, Lacerta rudis chechenica, Lacerta caucasica, Lacerta daghestanica. Scincidae: Eumeces schneiderii princeps.

SCHLEICH, H.-H. & W. KÄSTLE (1982): Hautstrukturen an Zehen und Schwänzen einiger Agamiden. - Salamandra, Frankfurt/Main, 18 (3/4): 322-329. (00.096)

(1) Es werden Rasterelektronenmikroskop-Aufnahmen von Fuß-Unterseiten und Schwanzschuppen von vier Agamiden-Arten vorgestellt und mit der in einem früheren Beitrag besprochenen Cophotis ceylanica verglichen. Die neu untersuchtehn Arten sind: Aphaniotis fusca, Otocryptis wiegmanni, Ceratophora stoddarti und Sitana ponticeriana.
(2) Die Oberflächenstrukturen der untersuchten Schuppen lassen sich in Fein- und Grobstrukturen einteilen. Als Feinstruktur zeigen alle untersuchten Tiere mit Ausnahme von Ceratophora stoddarti, die sich vermutlich vor der Häutung befand, ein Wabenmuster. Als Grobstrukturen können Kegel (Cophotis ceylanica) sowie Kiele und Stachelspitzen (übrige Arten) auftreten
(3) Die untersuchten Arten unterscheiden sich grundlegend in der Variationsbreite und Kontinuität der Fußbeschuppung.
(4) Der einkielige, ein- oder dreispitzige Schuppentyp wird als primitiv betrachtet. Spezialisierte Formen der Fußschuppen sind mit ihm durch Übergangsformen verbunden.
(5) Die Waben-Feinstruktur steht nicht in engem Zusammenhang mit einer speziellen Funktion bestimmter Schuppen. Vermutlich handelt es sich um ein stammesgeschichtlich relativ stabiles Merkmal.

SCHULTE II, J. (2009): Phylogenetic relationships and evolution of the agamid lizard subfamily Draconinae. - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 300.

SCORTECCI, G. (1937): Gli organi di senso della pelle degli Agamidi. – Mem. Soc. Ital. Milano, 10 (2): 157-205, Tav. I-II.

SELIGMANN, H. (2000): Evolution and ecology of developmental processes and of the resulting morphology: directional asymmetry in hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia). – Biological Journal of the Linnean Society 69: 461-481.

In this paper, the evolution and ecology of directional asymmetry (DA) during the developmental trajectory (DT) is compared with that of its product, morphological DA (MDA). DT and MDA are calculated for two bilateral morphological scale characters of lizards, the number of subdigital lamellae beneath the fourth toe in 10 agamid and 28 lacertid taxa, and the number of rows of ventral scales in 12 lacertid taxa. MDA, the subtraction between left and right sides (classical measure of DA), is functional in adult animals. Results confirm the hypothesis that, in DT, the regression parameters a (constant) and b (regression slope) of counts on the right side with those on the left describe a developmental process. No phylogenetic or environmental effects were observed on a and b, but analyses considering both a and b together show non-random phyletic patterns. Independent analyses deduced the same ancestral DT in Agamidae and Lacertidae. In Lacertidae, distance between pairs of taxa in a+b (standardized values) correlates positively with the phylogenetic distance between taxa. Phyletic trends in MDA are indirect, and due to the link of MDA with a + b. The MDA of species is more dissimilar in sympatry than in allopatry. The phyletic trends suggest evolution of DT, while the association of MDA with sympatry suggests that ecological pressures shape MDA in adult animals. Evolution of DT is independent from that of ist product, MDA-adaptive determinism defines the result of, but not the mechanistic process of, development. Deterministic environmental processes define MDA, and deterministic evolutionary processes define the interactive result of a and b, but not each separately. According to circumstances, different DTs produce similar or different MDA, and a particular DT can produce different MDAs.

SIEBENROCK, F. (1895): Das Skelet der Agamidae. – Sitz. Ber. Acad. Wiss. Wien, 104: 1089-1196.

SOKOLOVSKIJ, V.V. (1977): Systematic relationships in the family Agamidae from karyological data. – In: Darevskij, I.S. (ed.): Fourth all-Union Herpetological Conference. Questions of Herpetology. – Akademiya Nauk SSSR, Zoologicheskij Institut. Izdatel´stvo ´Nauka´. Leningrad. 195.

SOLLEDER, E. & M. SCHMIDT (1988): Cytogenetic studies on Sauria (Reptilia). I. Mitotic chromosomes of the Agamidae. - Amphibia-Reptilia, Leiden, 9: 301-310. (00.336)

STEMMLER, O. (1957): Zur Futterfrage junger Agamen. - Zeitschrift für Vivaristik, 3: 182-183. (00.338)

STOLK, A. (1959): Mijn ervaringen met de Agaam. – Lacerta, 17: 69-72.

STORR, G.M., SMITH, L.A., JOHNSTONE, L.A. & R.E. JOHNSTONE (1983): Lizards of western Australia II: Dragons and monitors. – W. Aust. Mus., Perth. 113 S.

STUART-FOX, D.M., MOUSSALLI, A., JOHNSTON, G.R. & I.P.F. OWENS (2004): Evolution of color variation in dragon lizards: quantitative tests of the role of crypsis and local adaptation. – Evcolution, 58: 1549-1559.

STUART-FOX, D.M. & T.J. ORD (2004): Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. – Proc. R. Soc. Lond. B 271: 2249-2255.

THYS VAN DEN AUDENAERDE, D.F.E. (1963): Les Agamidae du Congo: les espèces et leur distribution geographique. – Rev. Zool. Bot. afr., 68 (3-4): 203-250.

TOK, C.M. (1999): Reşadiye (Datça Yarımadası Kertenkeleleri Hakkında (Gekkonidae, Agamidae, Chamaeoleonidae, Lacertidae, Scincidae, Amphisbaenidae)[On the lizards of the Reşadiye (Datça) Peninsula]. – Tr. J. of Zoology, 23 (1): 157-175.

Eleven species from six families of lizards have been found in the Reşadiye (Datça) Peninsula between the years 1990-1993. In this survey the morphological characteristics such as pholodosis, color-pattern and body measurement and ratios have been investigated. Systematic positions the species of which we have a sufficient number of samples were more accurate in terms of morphological characteristics. Besides, the biological and ecological information on the species were also given.

TOMEY, W.A. (1983): Von Stachelnasen, Stumpfnasen und Spitznasen-Agamen von Sri Lanka (Ceylon). – Das Aquariuzm, 168: 321-326.

TROST, E.K. (1956): Die Bildung des Zwischenhirndaches der Agamidae, nebst Bemerkungen über die Lagebeziehungen des Vorderhirns. – Morph. Jahrb., 97: 143-192.

ULBER, T. (2002): Catalogue of valid species and synonyms, Agamidae. – Herprint Int., Bredell, RSA, 4: 1-416.

ULBER, T.M. & M. BARTS (1997): Catalogue of the valid species and synonyms Volume 4 (Agamidae / Uromastycidae). – Herprint International, Bredell, South Africa. 418 S.

VENUGOPAL, P.D. (2010): Population density estimates of agamid lizards in human-modified habitats of the Western Ghats, India. – Herp. J., 20 (2): 69-76.

The agamid lizards of the Western Ghats (WG) mountain chain in India are currently threatened by destruction of forests for conversion to plantations. Accurate information on the population status of the agamid lizards in modified habitats is needed for conservation and management considerations, but detailed data on population densities are currently not available. In this study, I estimated the population densities of agamid lizards in human-modified habitats of the Valparai plateau in the southern WG using distance sampling. Nineteen line transects (0.25 km each) in five study sites including abandoned vanilla, abandoned rubber, vanilla and tea plantations and a degraded evergreen forest patch were sampled a minimum of five times each. The population density (individuals/ha) of Calotes ellioti and Draco dussumieri in the vanilla plantation was estimated to be 8.95±2.09 and 1.25±0.40 respectively. The density of Psammophilus blanfordanus, which was detected only in tea plantations, was estimated as 3.13±1.02. Mean rate of encounters (animals/transect) for C. ellioti was highest in the vanilla plantation (1.83, SE=0.41). For D. dussumieri, the mean encounter rates were identical in the vanilla plantation (0.80, SE=0.21) and the abandoned rubber plantations (0.80, SE=0.4). The encounter rates of C. ellioti in the vanilla plantation were higher than those in rainforest fragments in the Valparai plateau. This study helps us understand the role of modified habitats in supporting populations of endemic agamid lizards.

WAGNER, P. (2008): Neues von afrikanischen Agamen. – Iguana, 21 (1): 13-16.

WAGNER, P. (2009): The arid corridor from Middle East to Africa – Insights from the Agamidae. - Abstracts of presentations hold on DeAGAMIS the 1st International Symposium on Agamid Lizards. Bonner Zoologische Beiträge, Bonn, 56 (4): 299.

WAGNER, P. (2010): Diversity & distribution of african reptiles, with a special focus on Agamid lizards. – Unpublished Ph.D. Thesis, Bonn, 374 S.

WAGNER, P. (2019): Extreme Überlebenskünstler – die bunte Welt der Wüstenagamen. – Reptilia, 24 (5): 14-21.

WARBURG, M.R: (1966): On the water economy of several Australian geckos, agamids, and skinks. – Copeia, 1966: 230-235.

WERMUTH, H. (1967): Liste der rezenten Amphibien und Reptilien. Agamidae. - Das Tierreich, Berlin, 86: I-XIV, 1-127. (00.340)

WERMUTH, H. (1974): Agamen auf Ceylon. – D. Aquar. Terrar. Z., Stuttgart, 27 (9): 316-318.
WITTEN, G.J. (1982): Phyletic groups within the family Agamidae (Reptilia: Lacertilia) in Australia. – In: Barker, W.R. & P.J.M. Greenslade (eds.): Evolution in the Flora and Fauna of Arid Australia. Peacock Book,South Australia.

WERNING, H. (1999): Wasseragamen. – Reptilia, Münster, 4 (6): 16-21.

WITTEN, G.J. (1983): Some karyotypes of Australian agamids (Reptilia: Lacertilia). – Aust. J. Zool., 31: 533-540.

WITTEN, G.J. (1985): Relative growth in Australian agamid lizards: Adaptation and evolution. – Aust. J. Zool., 33: 349-362.

WITTEN, G.J. (1993): Family Agamidae. – In: Glasby, C.J., Ross, G.J. & P.L. Beesly (eds.): Fauna of Australia Vol. 2A: Amphibia and Reptilia. – Australian Government Publishing, Canberra. 240-252.

ZAVIALOV, E.V. & V.G. TABACHISHIN (1997): Distribution and taxonomic status of the lizards of the South-west of Russia (Reptilia; Agamidae, Gekkonidae, Lacertidae). – Problems of General Biology and Applied Ecology, Saratoiv, 4: 3-13. (in russisch)

ZOFFER, D.J. (1996): Agamid lizards, keeping & breeding them in captivity. – t.f.h. Publ., 1996: 1-64.

zurück / back