Literatur und Schriften


Uromastyx MERREM, 1820

Dornschwänze

AMER, S.A:M. & Y. KUMAZAWA (2005): Mitochondrial DNA sequences of the Afro-Arabian spiny-tailed lizards (genus Uromastyx; family Agamidae): phylogenetic analysis and evolution of gene arrangements. – Biological Journal of the Linnaean Society, 85: 247-260.

AMER, S.A.M. & Y. KUMAZAWA (2009): Molecular affinity of Somali and Egyptian mastiguresamong the Afro-arabian Uromastyx. - Egypt. J. Exp. Biol. (Zool.), 5: 1-7.

Mitochondrial DNA of approximately 1040 bp from 16S rRNA and cytochrome b genes were amplified and sequenced from 11 taxa belonging to 9 Uromastyx species. These species were U. hardwickii from India, U. macfadyeni from Somali, U. dispar from Sudan, U. acanthinura from Morocco, U. geyri from Mali, U. aegyptia from Egypt and Arabia, U. benti from Yemen, U. ocellata from Egypt and Sudan and U. ornata from Sinai and Arabia. Nucleotides from these genes were used in combination with 1700 aligned sites from the mitochondrial DNA segment located between NADH dehydrogenase subunit 1 (ND1) to cytochrome oxidase subunit 1 (CO1) genes -that was previously sequenced for the same taxa to- test the phylogenetic position of U. aegyptia and U. macfadyeni. Different tree building methods were used and only single tree was given in which the positions of both Uromastyx taxa were identical to those produced by the previous molecular data but with stronger statistical supports. U. aegyptia was clustered within the Arabian clade and U. macfadyeni was clustered within the African clade.

ANANJEVA, N.B. & T.N. DUJSEBAYEVA (1997): SEM study of skin sense organs in two Uromastyx species (Sauria: Agamidae) and Sphenodon punctatus (Rhynchocephalia: Sphenodon). – Russian Journal of Herpetology, 4: 46-49.

ANTONINI, O. (2004): Les Fuette Queue. Lézards du genre Uromastyx. – Animalia editions, Campsegret. 96 S.

ANTONINI, O. & C. GRENOT (2003): Elevage et reproduction de plusieurs espèces de lézards fouette-queue du genre Uromastyx. – Situla, 7: 12-36.

BEDDARD, F.-E. (1905): Some notes on the cranial osteology of the Mastigure lizard, Uromastyx. – Proceedings of the Zoological Society, London, 75 (1): 1-9.

BLANFORD, W.T. (1874): Descriptions of two Uromasticine lizards from Mesopotamia and Southern Persia. - Proc. Zool. Soc. London, 1874: 656-161.

CLOUDLEY-THOMPSON, J.L. (1970): A new record of Uromastix in Sudan. – Br. J. Herpet., 4: 177.

COENEN, N. (2013): Een uitbraak van Devriesea agamarum infectie in een collectie doornstaartagamen (Uromastyx species). Masterproef. Universiteit Gent.

Dermatomycosen zijn een veel voorkomend probleem bij in gevangenschap gehouden reptielen. Ze zijn vaak een reden voor het consulteren van een dierenarts. In dit werk wordt er eerst een overzicht gegeven van verschillende dermatomycosen die voorkomen bij reptielen. Vaak gaat het om oportunistische schimmelinfecties die de reptielenhuid aantasten onder invloed van predisponerende factoren. Een intacte, gezonde reptielenhuid is bestand tegen schimmelinfecties en het belang van een optimale voeding, huisvesting en management voor de gezondheid van huid en dier mag niet onderschat worden. Sommige schimmels, zoals het Chrysosporium anamorph van Nannizziopsis vriesii (CANV), zijn echter primair pathogeen en kunnen klinische infecties veroorzaken onder schijnbaar normale omgevingscondities. Omdat dermatomycosen bij reptielen uiteindelijk kunnen leiden tot sterfte is een correcte diagnose en adequate behandeling absoluut noodzakelijk. Daarom wordt er ook een overzicht gegeven van de diagnostiek en behandeling van mycosen. De algemene aanpak van mycosen bij reptielen wordt besproken. Daarna worden de farmacologische aspecten van de meest gebruikte antimycotica, met name ketoconazole, itraconazole, fluconazole en voriconazole, nader belicht. Vervolgens wordt er dieper ingegaan op huidinfecties en septicemie veroorzaakt door het Chrysosporium anamorph van Nannizziopsis vriesii. De diagnose van CANV infecties en de belangrijkste differentiaal diagnosen worden besproken, alsook de behandeling en preventie van de aandoening. Tenslotte wordt er een casus uitgewerkt. De in dit werk besproken casus handelt over een groep baardagamen (Pogona vitticeps) die aan de Afdeling Pluimvee, Bijzondere Gezelschapsdieren en Proefdieren van de Faculteit Diergeneeskunde te Merelbeke werd aangeboden wegens huidproblemen. Het bleek om een infectie met het CANV te gaan. De diagnostische en therapeutische aanpak wordt besproken. Er werden ook gevoeligheidstesten uitgevoerd op de schimmelisolaten en er werd bovendien een farmacokinetische studie uitgevoerd.

COOPER, J.S. & D.F.G. POOLE (1973): The dentition and dental tissues of the agamid lizard, Uromastyx. – Journal Zool., London, 169 (1): 85-100.

ELMOGY, M., SARHAN, O.M., ELGENDY, A.M. & W.M. ALAMODI (2013): Morphological and molecular identification of some Uromastyx species (Reptilia; Agamidae) in Makkah, Saudi Arabia by forensically informative nucleotide sequencing (FINS) of 16S rRNA gene and electrophoretic protein patterns. - Life Sci. J. Acta Zhengzhou Univ. Overseas Ed., 10 (4): 933-938.

The morphological examination, of the collected Spiny-tailed lizards, revealed three Uromastyx subspecies (U. a. aegyptia; U. a. microlepis; and U. ornate ornate or U. ornate philbyi) to be inhabited in the holy land of Makkah of Saudi Arabia. FINS (Forensically Informative Nucleotide Sequencing) approach of 16SrRNA gene could confirm the morphologically identified first two subspecies to be U. a. aegyptia and U. a. microlepis, and identified the third subspecies to be U. ornate philbyi. This is the first successful typing of mitochondrial 16S rRNA gene with FINS approach carried out to identify the Spiny-tailed lizard, Uromastyx sp. in Saudi Arabia. The electrophoretic protein pattern analysis on SDS-PAGE showed the protein band of the molecular weight 275 kDa to be a characteristic protein marker for U. aegyptia microlepis; the protein band of 150 kDa to be a characteristic protein marker for U. aegyptia aegyptia; and the three protein bands of 200, 15, and 5 kDa to be characteristic protein markers for U. ornate philbyi. The obtained results suggested that protein electrophoresis is not only powerful tool in targeting the genetic variability within species but also in identifying them.

FRANK, M. (2008): Dornschwanzagamen (Uromastyx): Neue Erkenntnisse für die Terrarienpraxis. – Reptilia, Münster, 13 (6): 70-75.

GRATHWOHL, J. (2001): Afrikanske krybdyr i terrarium. 2. Tornhaleagamer, Uromastyx. - Nordisk Herpetologisk Forening, 44 (4): 111-119.

HARRIS, D.J., VASCONCEDLOS, R. & J.C. BRITO (2007): Genetiv variation within African spiny-tailed lizards (Agamidae: Uromastyx) estimated using mitochondrial DNA seqauences. – Amphibia-Reptilia, Leiden, 28: 1-6.

HERREL, A., CASTILLA, A.M., AL-SULAITI, M.K. & J.J. WESSELS (2014): Does large body size relax constraints on bite-force generation in lizards of the genus Uromastyx? – J. Zool. (London), 292 (3): 170-174.

The evolution of large body size has often been considered a key trait allowing the evolution of herbivory in lizards. Although many omnivorous lizards appear unspecialized, they typically show high bite forces, allowing them to reduce tough and fibrous plant matter. In contrast, true herbivores often show a suite of morphological and physiological specializations, allowing them to efficiently process and assimilate plant material. Moreover, many specialized herbivores have a large body size, thus likely relaxing constraints on bite-force generation given that bite force increases with increasing body mass. In this study, we test whether large herbivorous lizards of the genus Uromastyx have relatively lower bite forces for their body size compared with a medium-sized congener. No differences in bite force or head dimensions were observed between the two species or between both sexes in our sample. Moreover, bite force scaled with positive allometry relative to jaw length, suggesting that larger animals have disproportionately large bite forces. This suggests that even in the largest species, constraints on bite-force generation are still strong, possibly due to the demands imposed on the jaw system by the mechanical properties of the diet.

HOSER, R.T. (2014): A long overdue taxonomic rearrangement of the Uromastycinae (Squamata: Sauria: Agamidae). - Australasian Journal of Herpetology 23: 54-64.

For most of the past 2 centuries the entire Leiolepidinae Fitzinger, 1843. has been treated as consisting of just two genera. These are: Leiolepis Cuvier, 1829 and Uromastyx Merrem, 1820. Based on the molecular results of Pyron et al. (2013) and others, Uromastycinae Theobold, 1868 is herein recognized as a subfamily being separate from Leiolepidinae, now treated as only including the genus Leiolepis. Ultimately both groups may warrant full family-level recognition. Recently, Wilms et al. (2009) commenced the long-awaited dissection of Uromastyx with the resurrection of Saara Gray, 1845 to accommodate the three most divergent species (as a clade) within the genus Uromastyx as popularly recognized. Noting that many authors have recognized distinctive species groups and/or clades as a result of detailed studies, this paper formalizes these results by revising the taxonomy of the extant members of the subfamily Uromastycinae. As a result, the genus Saara is divided into three genera, with Centrotrachelus Strauch, 1863 resurrected. Centrotrachelus is divided into two genera, the other formally named Borgsaurus gen. nov.. Uromastyx is divided into four genera, utilizing the existing names Uromastyx Merrem, 1820 and Aporoscelis Boulenger, 1885 for two species groups, with two new genera formally named for the first time, these being Euanedwardssaurus gen. nov. and Dicksmithsaurus gen. nov.. Euanedwardssaurus gen. nov. is divided three ways, the other subgenera being Newmansaurus subgen. nov. and Dallysaurus subgen. nov.. Dicksmithsaurus gen. nov. is also divided three ways, the other subgenera being Stokessaurus subgen. nov. and Mooresaurus subgen. nov.. Uromastyx is split two ways, with the monotypic subgenus Supremeuromastyx subgen. nov. erected to accommodate the most divergent taxon. Noting that Saara, Centrotrachelus and Borgsaurus gen. nov diverged from the other genera and species in the Uromastycinae between 25 and 29 MYA, they are herein placed in the tribe Borgsauriini tribe nov. Uromastyx, Aporoscelis, Euanedwardssaurus gen. nov. and Dicksmithsaurus gen. nov. are placed in a the tribe Uromastyxiini tribe nov.. Noting that the various subgenera defined herein are believed to have diverged from one another at between 6 and 15 MYA based on a calibration of the molecular results with relevant geological and climatic events using various mathematic formulae, it is likely that some or all may eventually be recognized as full genera.

JOGER, U. (1986): Phylogenetic analysis of Uromastyx lizards, based on albumin immunological distances. - In: Rocek, Z. (ed.): Studies in Herpetology, Prague 1986: 187-192. (01.716)

JOGER, U. (1986): Phylogenetic analysis of Uromastyx lizards, based on albumin immunological distances. – In: Rocek, Z. (ed.): Studies in Herpetology. Prague. 198-191.

Abstract:
This study presents a cladogram for the Saharo-Sindian lizard genus Uromastyx Merrem, 1820, derived by immunological methods. It is part of a research program on the evolutionary history of the herpetofauna of the Old World arid belt and was supported by the Minister für Wissenschaft und Forschung of North-Rhine Westphalia, and by a personal grant to the author by the Deutsche Forschungsgemeinschaft.

JOHNSON, J.D. (2006): Exotic animal care: What veterinarians need to know about spiny tailed lizards. - Exotic DVM, 8 (4): 36-40.

JULIAN, S. & P. GÉRARD (1998): L´élevage des Agames Barbus et des Uromastyx. – Phillipe Gérard Editions, Paris, FRAU. 67 S.

KAUP, F. (1828): Über Hyanena, Uromastix, Basiliscus, Corythaeolus, Acontias. – Isis von Oken, Jena, 21: 1143-1151.

KECHNEBBOU, M. (2022): Ecophysiology of Uromastyx desert lizards and consequences for current and future distribution. Tesis Doctoral. Universidad Autónoma de Madrid. 165 pp.

Climate change and human disturbance are expected to impose formidable physiological and ecological challenges on terrestrial ectotherms. Lizards are a major taxonomic example of how species diversity is expected to plummet in response to a warming climate, as lizards are particularly sensitive to changes in temperature. The North African spiny-tailed lizard (Uromastyx acanthinura) is one of such examples, ranging from eastern Algeria to northwestern Libya. In Tunisia, this species occupies arid and desert areas and it is frequently poached by local people for food and traditional medicine. Thus, the focus of this thesis was to provide an overview on some ecological and physiological aspects of U. acanthinura in southern Tunisia, which may help to its conservation. My specific goals were 1) to examine the habitat requirements of the Tunisian population of this lizard, 2) to determine how this lizard can behaviorally and physiologically responds to disturbed environments and 3) to predict the potential impact of climate change on the distribution of fifteen Uromastyx species worldwide under current and future scenarios. Fieldwork was comprised of several components: a) lizards captured in live traps were morphologically characterized and subsequently released back to their capture sites, b) blood and fecal samples were collected, and c) the variables that could act as determinants of current species distribution were measured. Further, d) behavioral data were obtained from recorded videos that were analysed to assess the thermoregulatory strategy and e) plasma corticosterone and fecal corticosterone metabolites of males and females found at different distances from roads and urban areas in the study area were measured with an enzyme immunoassay kit. In addition, environmental variables and point locality data derived from several sources were used to examine the concordance between geographical distributions and environmental niches derived from occurrences for fifteen species of the genus Uromastyx and to predict the potential impact of climate change on the distribution of Uromastyx species worldwide using Ecological Niche Models (ENMs) under RCPs 2.6 and 8.5 emission scenarios for the year 2070. Morphometric analysis showed a sexual size dimorphism in U. acanthinura, with adult males reaching longer total lengths and greater weight compared to females. Diet has been described as largely herbivorous in U. acanthinura, with predominantly plant material during their active seasons. These animals prefer to set up their burrows in rocky sites close to agricultural areas and on mountain slopes facing between south west and south east and avoid living near to roads and urban areas. In the three sampling periods (spring, summer and autumn), the mean activity temperature of U. acanthinura (mean ±SE = 35.7 ±0.22°C) was near the range of preferred temperatures registered for other similar lizards species (34–37 °C). Results indicated that bigger individuals achieve their preferred body temperature by spending more time exposed on full sun. Furthermore, the study revealed that human disturbance may be a potential stressor for the threatened spiny-tailed lizard, which may result in increased levels of glucocortocoids. Males had higher plasma corticosterone than females, and these levels were higher in autumn than in summer and spring in both sexes. Moreover, levels of corticosterone in plasma and corticosterone metabolites in faeces were significantly higher when the capture site was closer to roads or urban areas. According to predictive models, the degree of geographical overlap is lower than the degree of environmental sharing, a pattern reinforcing the hypothesis of a speciation process within the genus Uromastyx mainly based on geographical isolation processes. Moreover, climate change could essentially threaten up to 75% of the Uromastyx species, while 25% of species may resist or even benefit from global warming. These species may lose suitable climatic conditions within protected areas and move into unprotected surroundings, making extinction rates potentially higher than expected. Understanding how free-living animals are influenced by environmental conditions and human perturbations could help direction of conservation strategies for endangered species. The results of this study are discussed in the context of management for conservation of these endangered lizards in their natural habitats.

KECHNEBBOU, M., LISBOA DE CARVALHO, D., SALVA, P.H. da & P. SILVA (2021): Global warming drives range shifts in spiny-tailed lizards (Squamata: Agamidae: Uromastyx) in the African and Arabian deserts. - Journal of Arid Environments 191: 104522 (early view) 11 pp.

Many species are expected to be at risk from climate change, whereas others may not be threatened because the projected change will occur within their physiological tolerance limits. Particularly, lizards of the genus Uromastyx, known for their narrow climatic and habitat requirements and limited dispersal abilities, might face local or global extinction due to current climate change. To address this problematic situation, we examined the potential effect of climate change on the distribution of 15 Uromastyx species (Merrem, 1820) using Ecological Niche Models (ENMs) under RCPs 2.6 and 8.5 emission scenarios for the year 2070. Here, we also tested the role of protected areas (PAs) in the conservation of Uromastyx species. According to our models, climate change could essentially threaten up to 75% of the studied species, while 25% of species may resist or even benefit from global warming. Furthermore, taxa with relatively broader distributions are more protected than taxa with smaller distributions suggesting that conservation efforts should be focused on a local scale. Future vulnerability assessment of individual species to climate change should consider integrating the physiological and behavioral plasticity of the taxa studied to allow mechanistic models to evaluate climate change effects on these species.

KECHNEBBOU, M., LOBO, J.M. & M. CHAMMEM (2020): The correspondence between environmental similarity and geographical sympatry in Uromastyx species. - Amphibia-Reptilia 41: 245-251.

Estimating the realized and potential distribution of species has become a very active field of research with capacity to propose likely speciation mechanisms. Here, environmental variables and point locality data derived from several sources were used to examine the concordance between geographical distributions and environmental niches derived from occurrences for eleven species of the genus Uromastyx (Reptilia, Agamidae). Our results indicate that the degree of geographical overlap is definitively and statistically lower than the degree of environmental similarity. This reinforces the hypothesis that speciation process within the genus Uromastyx will be mainly based on geographical isolation. However, the environmental divergence among some groups of species cannot be excluded; high environmental distances can be obtained for some related species and the environmental gradient represented by two unique climatic variables allows discriminating some species among which an ecological or environmental segregation would be a plausible explanation.

KHALI, F. & M. YANNI (1959): Studies on carbohydrates in reptiles. II. Effect of temperature, hepactectomy and pancreatectomy on glucose tolerance test and on tissue glycogen in Uromastyx. – Z. vergl. Physiol., 42: 393-402.

KNAPP, A. (2004): An assessment of the international trade in Spiny-tailed lizards Uromastyx with a focus on the role of the European Union. – Technical Report to the European Commission. 29 S.

KOLPOS, P. (2000): Cheilitis in lizards of the genus Uromastyx associated with a Filamentous Gram Positive Bacterium. – Proceedings of 7th ARAV Conference, Reno,Nevada.

LIETZ, P. (2021): A road map to Uromastyx. – Herpetoculture Magazine, (23): 6-14.

MATEO, J., GENIEZ, P., LÓPEZ-JURADO, L. & J. BONS (1998): Chorological analysis and morphological variations of Saurians of the genus Uromastyx (Reptilia, Agamidae) in western Sahara. Description of two new taxa. – Rev. Esp. Herp., 12: 97-109.

The description of a new species of the genus Uromastyx is proposed on the basis oftwo specimens from the Adrar Souttouf in Western Sahara. This taxon differs greatly from U. acanthinura on account its larger size, the much larger number of scales, the arrangement of tubercules on its upper thighs, the different habitus and colouring. These morphological features mean it closely resembles U. aegyptia. The existence of a relictual U. aegyptia-group throughout the Sahara is suggested. In addition, the morphological variations in Spiny-tailed agamas (or Mastigures) ofthe Uromastyx acanthinura group in the west ofthe Sahara are briefly analysed. This produces evidence for the existence of a species proper to Western Sahara and surrounding areas, Uromastyx jlavifasciata, represented by two subspecies: U. f jlavifasciata in the north and U. f obscura subsp. nov. in the south. The latter new form is characterised by uniformly black colouring, even in active individuals. This work also demonstrates that Uromastyx acanthinura werneri does not penetrate Western Sahara and that ist distribution is parapatric with that of U. jlavifasciata. Lastly, the presence of U. maliensis is suspected in the Adrar Atar (Mauritania) and the Adrar Souttouf (Western Sahara).

MERREM, B. (1820): Description genus Uromastyx. – In: “Versuch eines Systems der Amphibien I (Tentamen Systematis Amphibiorum)”. J. C. Kriegeri, Marburg, 191 pp.

MOODY, M.S. (1982): Phylogenetic origins and relationships of terrestrial genera Agama, Phrynocephalus, and Uromastyx within the family Agamidae (Reptilia: Sauria). – Vertebrata Hungarica, Musei historico-naturalis hungarici, Budapest. 252.

MOODY, S.M. (1987): A preliminary cladistic study of the lizard genus Uromastyx (Agamidae, sensu lato), with a checklist and diagnostic key to the species. – Proceedings of the 4th Ordinary General Meeting of the Societas Europaea Herpetologica, Nijmegen. 285-288.

MUDDE, P. & G. HOFSTRA (2008): Nieuwe Uromastyx soorten in de hobby. - Lacerta 65 (6): 254-262.

MÜLLER, L. (1922): Über eine neue Uromastyx-Art aus der Zentral-Sahara. – Naturwiss. Beob., Frankfurt/Main, 63: 193-201.

NALDO, J.L., LIBANAN, N.L. & J.H. SAMOUR (2009): Health assessment of a spiny-tailed lizard (Uromastyx spp.) population in Abu Dhabi, United Arab Emirates. – J. Zoo Wildl. Med.,40 (3): 445-452

NALDO, J.L., SAMOUR, J. & N. LIBANAN (2006): Preliminary report on the survey of the health status of the spiny-tailed lizard (Uromastyx sp) in Wrsan Farm, Al Ajban, Abu Dhabi, UAE. - Wildlife Middle East News, 1(3): 5.

RICHTER, W. (1954): Dornschwanzechsen. – Kosmos, Stuttgart, 50: 144.

SAKSENA, R.D. (1942): The bony palate of Uromastix Merrem. – Proc. Ind. Acad. Sci., B 16: 107-119.

SANDERA, M. (2010): How to identify specimens of Uromastyx lizards without marking. Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 154.

SCHMITZ, S. (1972): Liebenwerte Vegetarier – Dornschwänze. – Aquarien Magazin, 6 (4): 174-175.

SEUFER, H., KOWALSKI, T.& H.J. ZILGER (2007): Die Dornschwanzagamen des Sultanats Oman. – Draco, Münster, 8 (3): 67-74.

TAMAR, K., METALLINOU, M., WILMS, T., SCHMITZ, A., CROCHET, P.-A., GENIEZ, P. & S. CARRANZA (2017): Evolutionary history of spiny-tailed lizards (Agamidae: Uromastyx) from the Saharo-Arabian region. – Zool. Scripta, 47: 159-173.

The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the desert areas of North Africa and across the Arabian Peninsula towards Iran. The systematics of this genus has been previously revised, although incomplete taxonomic sampling or weakly supported topologies resulted in inconclusive relationships. Biogeographic assessments of Uromastycinae mostly agree on the direction of dispersal from Asia to Africa, although the timeframe of the cladogenesis events has never been fully explored. In this study, we analysed 129 Uromastyx specimens from across the entire distribution range of the genus. We included all but one of the recognized taxa of the genus and sequenced them for three mitochondrial and three nuclear markers. This enabled us to obtain a comprehensive multilocus time-calibrated phylogeny of the genus, using the concatenated data and species trees. We also applied coalescent-based species delimitation methods, phylogenetic network analyses and model-testing approaches to biogeographic inferences. Our results revealed Uromastyx as a monophyletic genus comprised of five groups and 14 independently evolving lineages, corresponding to the 14 currently recognized species sampled. The onset of Uromastyx diversification is estimated to have occurred in south-west Asia during the Middle Miocene with a later radiation in North Africa. During its Saharo-Arabian colonization, Uromastyx underwent multiple vicariance and dispersal events, hypothesized to be derived from tectonic movements and habitat fragmentation due to the active continental separation of Arabia from Africa and the expansion and contraction of arid areas in the region.

TEAM, B. (2018): Uromastyx as pets. - Zoodoo Publ. 120 pp.

TOFOHR. O. (1900): Der Dornschwanz in warmen trocknen Terrarium. – Nerthus 2: 453-454; 471-473.

VOSJOLI, P. de (1995): How to establish ornate Uromastyx. – Vivarium, Lakeside, 7 (3): 14-17, 52-53.

WIECHERT, J. (2007): Ein besonderes Problem bei der Terrarienhaltung von Uromastyx: der Lippengrind der Dornschwanzagame (Cheilitis des Uromastyx). – Draco, Münster, 8 (3): 42-44.

WILMS, T. (1995): Dornschwanzagamen, Lebensweise – Pflege – Zucht. – Herpeton-Verlag, Offenbach. 130 S.

WILMS, T. (1998): Zur Taxonomie, Zoogeographie und Phylogenie der Gattung Uromastyx (Sauria: Agamidae sensu lato) mit Beschreibung zweier neuer Arten aus dem südöstlichen Arabien und aus der Zentralsahara. – Diplomarbeit Universität Kaiserslautern. 280 S.

WILMS, T. (1999): Die Pflege und Vermehrung von Dornschwanzagamen im Terrarium. – Reptilia, Münster, 4 (2): 25-29.

WILMS, T. (1999): Das Fortpflanzungsverhalten der Uromastyx-Arten. – Reptilia, Münster, 4 (2): 34-37.

WILMS, T. (1999): Dornschwanzagamen. – Reptilia, Münster, 4 (2): 18-24.

WILMS, T. (2001): Dornschwanzagamen, Lebensweise – Pflege – Zucht. – Herpeton-Verlag, Offenbach. 2. bearbeitete Auflage. 143 S.

WILMS, T. (2001): Dornschwanzagamen, Lebensweise, Pflege, Zucht. Herpeton-Verlag, Offenbach. 2. Auflage. 142 S.

WILMS, T. (2002): Uromastyx – spiny-tailed agamas. – Reptilia (GB ), 21: 30-33.

WILMS, T. (2002): Uromastyx; reproductive behaviour. – Reptilia (GB), 21: 30-33.

WILMS, T. (2005): Captive Care of Uromastyx. – Iguana, 12 (2): 102-107.

WILMS, T. (2005): Rettungsaktion für Dornschwanzagamen. – Reptilia, Münster, 10 (4): 6-7.

WILMS, T. (2005): Uromastyx – Natural History, Captive Care, Breeding. – Herpeton, Offenbach, 143 S.

WILMS, T. (2007): Dornschwanzagamen der Gattung Uromastyx – Einführung in Taxonomie und Ökologie einer auf Wüsten spezialisierten Echsengruppe. – Draco, Münster, 8 (3): 4-19.

WILMS, T. (2007): Ursachen und Ausmaß der Bedrohung von Dornschwanzagamen – Versuch einer Bestandsaufnahme. – Draco, Münster, 8 (3): 75-80.

WILMS, T. & W. BÖHME (2007): Review of the taxonomy of the spiny-tailed lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx). – Fauna of Arabia, 23: 435-468.

WILMS, T., BÖHME, W., WAGNER, P., LUTZMANN, N. & A. SCHMITZ (2009): On the phylogeny of the genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the genus Saara Gray, 1845. – Bonner zoologische Beiträge, Bonn, 56 (1/2): 55-99.

Abstract:
We assessed the taxonomic relationships within the genus Uromastyx Merrem, 1820 using morphological and genetic methods, resuilting in the resurrection of the genus Saara Gray, 1845 for Saara hardwickii, S. asmussi and S. loricata and in changes of the taxonomic rank of Uromastyx nigriventris, U. aegyptia leptieni and U. shobraki. A synopsis of all taxa considered to be valid is provided, including differential diagnosis, description and data on their respective distribution. A key for the species of Saara and Uromastyx is presented.

WILMS, T., STASSEN, B., OPPERMANN, A. & C. PETRI (2007): Ein Beitrag zur artgerechten Einrichtung und Beleuchtung von Terrarien für die Haltung von Dornschwanzagamen. – Draco, Münster, 8 (3): 20-29.

WILMS, T., WAGNER, P. & W. BÖHME (2010): A review on the taxonomy of the genera Uromastyx and Saara. - Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 157




Uromastyx acanthinura BELL, 1825

Nordafrikanische Dornschwanzagame, Veränderlicher Schleuderschwanz

BAHIANI, M., HAMMOUCHE, S. & T. GERNIGON-SPYCHALOWICZ, T. (1996): Etude histologique des gonades, du tractus genital et du segment sexuel du rein chez de lezard Uromastix acanthinurus (Bell, 1925). – Bulletin de la Societe Zoologique de France Evolution et Zoologie, 121 (1): 99-102.

BAUMGARTEN, L. & H.-P. PINK (1976): Eiablage beim Afrikanischen Dornschwanz. – Aquar. Terrar., Leipzig, 1976: 303-305.

BECHTLE, W. (1967): Ein Sonnenanbeter. Dornschwänze kommen an Löwenzahnblüten nicht vorbei. - Aquarien Magazin, 1967 (6): 249-250. (1388)

BELL, T. (1825): Description of a new species of Lizard. - Zoological Journal 1: 457-460.

BEREC, M., STARÁ, Z. & S. POLÁKOVÁ (2014): Relation between Body-Size and Thermoregulation Behavior: Postprandial Thermophily in Spiny-Tailed Agama, Uromastyx acanthinura Bell. - Polish Journal of Ecology, 62 (1): 139-145.

Ectothermal vertebrates regulate their body temperature within definite limits to maintain physiological processes at their optimal levels. Among others, food processing and absorption are strongly temperature-dependent. Deficiency of adequate temperatures limits ectotherms in growth and maintenance. On the other hand, thermoregulatory behavior is costly and should be constrained by many factors. Using artificial thermal gradients (26–44oC), we measured temperature preferences of 10 spiny-tailed agamas (Uromastyx acanthinura) in controlled indoor experiment. Each lizard could choose place in the terrarium before and after feeding. Then, temperature preferences during pre-feeding and post-feeding periods were compared. We found significant increase of preferred temperature after feeding. Detailed view revealed that there is consistent influence of body size: bigger lizards maintained higher temperature during the whole experiment. We hypothesize that bigger potential predation risk on smaller lizards due to their size would force them to choose less optimal conditions.

BORCHERT, U. (1971): Zur Haltung von Dornschwanz (Uromastyx acanthinurus) und Blauzungenskink (Tiliqua scincoides). – Die Aquar. Terrar. Z., Stuttgart, 24 (10): 348-351.

BRENDEL, H. (1958): Meine afrikanischen Dornschwänze (Uromastix acanthinurus). – Die Aquar. Terrar. Z., 12: 373-375.

BRENDEL, H. (1978): Eine Dornschwanz.Agame legt Eier. – Die Aquarien- und Terrarien-Zeitschrift, 31 (9): 318-320.

DAM, H. van (1969): Uromastyx acanthinurus. Een vriendelijk monster. – Lacerta, 28 (2): 13-16.

DUBUIS, A., FAUREL, L., GRENOT, C. & R. VERNET (1971): Sur le régime alimentaire du lizard saharien Uromastix acanthinurus Bell. – C. r. hebd. Séanc. Acad. Sci., Paris, 273D: 500-503.

FISCHER, J. von (1885): Der veränderliche Schleuderschwanz (Uromastyx acanthinurus BELL) in der Gefangenschaft. – Der Zool. Garten, 26: 269-278.

FISCHER, J. von (1888): Nachtrag zur Naturgeschichte des veränderlichen Schleuderschwanzes, Uromastyx acanthinurus. – Der Zool. Garten, 29: 97-108.

FRANK, M. (2010): Schlupf eines völlig gesunden Jungtieres der Nordafrikanischen Dornschwanzagame aus einem schimmelbefallenen Ei. – Terraria, Münster, 5 (25): 3-4.

GAAL, R. (1994): Geslaagde kweek, met Uromastyx acanthinurus – Verzamelnummer Uromastyx acanthinurus. – Doelgroep groene Leguaan, S: 20.

GEORGE, W. (1986): The thermal niche: desert sand and desert rock. – J. Arid Environm., 10 (3): 213-224.

Sand and rock provide unique thermal niches in hot deserts. The sand mammal Psammomys obesus is compared with the sand lizard Varanus griseus and the two are further compared with the rock mammal Ctenodactylus vali and the rock lizard Uromastix acanthinurus. The thermal niche breadth of the sand lizard is narrow compared with the rock lizard and the sand mammal. The broad thermal niche of rock offers the possibility of herbivory to the rock lizard. The contrast between the mammals is less marked because they can broaden the thermal niche by being active at low surface temperatures. Niche overlap between the mammals and the lizards indicates that thermal niche separation is not the only factor in permitting their co-existence.

GRENOT, C. (1967): Observation physio-écologique sur la regulation thermique chez le lizard agamide Uromastix acanthinurus, Bell. – Bulletin Soc. zool. Fra., 92: 51-66.

GRENOT, C. (1968): Sur l´excrétion nasale de sels chez le lizard saharien: Uromastyx acanthinurus. – C.r. hebd. Séanc. Acad. Sci. Paris, 266D: 1871-1874.

GRENOT, C. (1968): Etude comparative de la resistance et à la chaleur d´Uromastix acanthinurus et de Varanus griseus. – Terre Vie, 1968: 390-409.

GRENOT, C. (1974): Polymorphisme chromatique du lizard agamide Uromastix acanthinurus Boll. dans les populations du Sahara nord occidental. – Bulletin Soc. zool. Fr., 99 (1): 153-164.

GRENOT, C. (1976): Ecophysiologie du lézard saharien Uromastyx acanthinurus Bell 1825 (Agamidae herbivore). – Pris (École Normale Supérieure Publications du Laboratoire de Zoologie). 323 S.

GRENOT, C. (1978): Ecophysiologie du lézard saharien Uromastyx acanthinurus Bell 1825 (Agamidae herbivore). Résumé. – Bull. Soc. Herp. Fr., 5: 25-27.

GRENOT, C. (1982): Ecophysiologie du lézard Uromastyx acanthinurus au Sahara nord-occidental. – Bull. Soc. Herp. Fr. 23: 26-27.

GRENOT, C. & F. LOIRAT (1973): L´activite et le comportement thermoregulateur du lizard Saharien Uromastix acanthinurus Bell. – Terre Vie, 27 (3): 435-455.

GRENOT, C. & F. LOIRAT (1973): Sur une population d´Uromastix acanthinurus Bell isolée au milieu du Grand Erg occidental (Sahara algérien). – Comptes r. hebd. Séanc. Acad. Sci., Paris (Sér. D), 276 (8): 1349-1352.

GRENOT, C. & R. VERNET (1973): Sur une population d´Uromastix acanthinurus Bell isolée au milieu du Grand Erg occidental (Sahara algérien). – Comptes r. hebd. Séanc. Acad. Sci., Paris (Sér. D), 276 (8): 1349-1352.

GRIMM, J. (1982): Nachzucht bei der nordafrikanischen Dornschwanzagame, Uromastyx acanthinurus Bell. – Aquar. Terrar., Leipzig, 28 (2): 64-69. (00.089/1350)

Inhalt:
Die Elterntiere. Das Terrarium. Fütterung. Territorial- und Paarungsverhalten. Schwierigkeitenbeim Schlupf. Die jungen Uromastyx und ihre Aufzucht. Weitere Versuche.

GRIMM, J. (1986): Afrikanische Dornschwanzagamen Uromastyx acanthinurus – langjährige Erfahrung bei Haltung und Nachzucht.– Aquar. Terrar., Leipzig, 33 (11): 384-386, 389.

HAMMOUCHE, S. & T. GERNIGON-SPYCHALOWICZ (1996): La folliculogenese chez le lezard Uromastix acanthinurus [acanthinurus] (Sauria, Agamidae). – Bulletin de la Societe Herpetologique de France, 78: 29-33.

HART, H. (1975): Dornschwänze mögen Gelb. – Aquar. Mag., Stuttgart, 9 (3): 100-101.

HAßL, A. & D. HAßL (1988): Chemisch-analytische und elektrophoretische Untersuchungen an Seren von Uromastyx acanthinurus Bell, 1825 (Sauria: Agamidae). - Amphibia-Reptilia, Leiden, 9: 181-187. (01.726)

Abstract:
As only little information about the blood chemistry of reptiles is available, a contribution for the establishment of standard values of serum parameters from Uromastyx acanthinurus is given. The sera were tested for their contents of total protein, glucose, triglycerides, cholesterol, uric acid, urea, creatinine, bilirubin, aspartate aminotransferase, alanine aminotransferase, y-glutamyl-transferase, iron, , and calcium. In a countercurrent electrophoresis the serum proteins were separated according to their electrophoretic mobility.. Additionally, the molecular masses of the proteins were determinated by a discontinuous polyacrylamid gel electrophoresis in the presence of sodiumdodecylsulfate. By means of these techniques the albumin and the 7S-antibodies from the Spiny-tailed lizard sera were characterized.

HERRELL, A. & F. de VREE (2009): Jaw and hyolingualmuscle activity patterns and bite forces inthe herbivorous lizard Uromastyx acanthinurus. – Archives of Oral Biology 54: 772-782.

Uromastyx lizards are basal agamid lizards that are characterized by an herbivorous diet and a robust akinetic skull. Recently, lizards in general, and Uromastyx lizards in particular, have become a model system for mechanical analyses of skull function. However, quantitative models of skull function are hampered by a lack of knowledge on the activation patterns of jaw and hyolingual muscles. Moreover, in vivo bite force or strain data, essential to test the validity of these modelling efforts, are lacking. Here we provide data on the muscle activation patterns and bite forces in the lizard Uromastyx acanthinurus. Our results show that muscle recruitment patterns during intra-oral transport and swallowing, are qualitatively similar to those observed for other lizards. Whereas during the slow opening phase the hyolingual muscles show a pronounced activity, the fast opening phase is characterised by strong activity in the jaw opener and the tongue and hyoid retractors. During fast closing the jaw closers become active and at the end of this phase, the jaw closers become silent momentarily before showing a renewed and strong activity during the slow closing/power stroke phase. Measurements of bite forces indicate bite force levels similar to those of agamid lizards of similar size, and similar to those predicted based on recent modelling efforts. These data should allow further refinement and validation of recently published models of biting in lizards of the genus Uromastyx.

HIGHFIELD, A.C. & T. SLIMANI (1998): The Spiny-tailed Lizard at home: Uromastyx acanthinurus in southern Morocco. – Reptioles (Magazine). Guide to keeping reptiles and amphibians, Irvine, 6 (7): 76-87.

HOCH, R. (1951): Der afrikanische Dornschwanz (Uromastyx acanthinurus Bell). – Die Aquar. Terrar. Z., Stuttgart, 4: 20-22.

HÜCKER, H. (1958): Sonnenanbeter. – Aquar. Terrar., Leipzig, 1958: 111-114.

KOLAR, K. (1953): Die Sommerhaltung von Uromastyx acanthinurus und Varanus griseus im Freilandterrarium. - Die Aquar. Terrar. Z., Stuttgart, 6 (7): 186-188. (00.353)

KOLAR, K. (1957): Jugendentwicklung von U. acanthinurus. – Zool. Garten (N.F.), 23: 18-27.

KRAALINGEN, R. van (1980): De geboorte van een Afrikaanse doornstaartagame Uromastyx acanthinurus. – Lacerta, 39 (1): 3-5. (02.208)

KRABBE-PAULDURO, U. et al. (1988): Pflege und Nachzucht der Afrikanischen Dornschwanzagame Uromastyx acanthinurus BELL, 1825. - Salamandra, Bonn, 24 (1): 27-40. (20/05)

LEMIRE, M. (1978): Etude anatomo-histiologique de l’organe nasal du lézard Uromastyx acanthinurus Bell 1825 (Sauria, Agamidae).  Problèmes posés par l’adaption au milieu. Résumé. – Bull. Soc. Herp. Fr. 5: 28-29.

LEMIRE, M. & R. DELOINCE (1970): Etude des structures nasals et glandes annexes du Fouette-Queue, Uromastix acanthinurus. – Rapp. part. Cent. Rech. Serv. Santé Armées, 64: 1-51.

LEMIRE, M., DELOINCE, R. & C. GRENOT (1970): Etude des cavités et glandes nasales du lézard Fouette-Queue, Uromastix acanthinurus Bell. – C.r. hebd. Séanc. Acad. Sci., Paris, 270D: 817-820.

LEMIRE M., DELOINCE R., & C. GRENOT (1972): Etude histoenzymologique de la glande "à sels" du Lézard saharien Uromastix acanthinurus Bell. - C. R. Acad. Sc., 274 (sér. D): 3413–3416.

LEMIRE, M., GRENOT, C. & R. VERNET (1979): La balance hydrique d’Uromastix acanthinurus Bell (Sauria, Agamidae) au Sahara dans des conditions semi–naturelles. - C. R. Acad. Sc., 288 (sér. D): 359–362.

LEMIRE, M. & R. VERNET (1983): Acclimatation of nasal salt secretion in the lizard Uromastix acanthinurus (Agamidae). Effects of repetitive salt loads. - Journal of Arid Environments 6: 145-153.

Excretion via the nasal salt gland ofthe Saharan lizard Uromastix acanthinurus was studied following repetitive injections of KCland NaCl. Prior conditioning had a definite influence on adjustment to excessive saline loading. Compensation for modification to the K/Na ratio was slow. This was because the hormonal mediation of salt elimination in this vegetarian species is limited. The mechanism of nasal salt secretion is not uniform among lizards and its interpretation requires the study of more species.

LENNEP, E.W: van & H. KOMNICK (1970): Finer structure of the nasal salt gland in the desert lizard Uromastyx acanthinurus. – Cytobiologie, 2: 47-67.

MATZ, G. (1972): Terrariofilia Uromastix acanthinurus. – Vida acuat No. 9: 310, 323-324.

MENNE, H.A.L. (1949): Ervaringen met doornstaarthagedissen. – Lacerta, 8 (2): 9-10.

MERTENS, R. (1962): Bemerkungen über Uromastyx acanthinurus als Rassenkreis. – Senck.biol., Frankfurt/Main, 43: 425-432.

MÜLLER, K. (1976): Temperatur- und Aktivitätsperiodik bei Uromastyx acanthinurus (Reptilia, Agamidae). – Unveröff. Staatsarbeit. 84 S.

NAGTEGAAL, J. (1955): De Noord-Afrikaanse doornstaart hagedis Uromastix acanthinurus Bell. – Lacerta, 13: 30-32.

OLIVER, E. (1911): Variation de l'ecaillure chez Uromastix acanthinurus Bell. – Bull. Soc. Zool. Fr., 36: 77-78.

ORTLEPP-SCHUMACHER, E. & R. SCHUMACHER (1988): Uromastyx acanthinurus Bell 1825 – Nachzucht der Afrikanischen Dornschwanzagame. – Sauria, Berlin, 10 (4): 17-19.

ORTNER, A. (1989): Wiederholte Nachzucht der Nordafrikanischen Dornschwanz-agame (Uromastyx acanthinurus BELL, 1825). - herpetofauna, 11 (63): 20-21. (1323)

ORTNER, A. (1989): Pflegebedingungen und Nachzucht der Nordafrikanischen Dornschwanzagame (Uromastyx acanthinurus Bell, 1825). – herpetofauna, 11 (59): 11-16.

PETZOLD, H.G. (1977): Uromastyx acanthinurus Bell, 1825, Afrikanischer oder Veränderlicher Dornschwanz. – Aquarien Terrarien, 24 (12): 430b.

PFLUGMACHER, S. (1984): Über die Haltung des afrikanischen Dornschwanzes Uromastyx acanthinurus BELL, 1825. – Sauria, Berlin, 6 (4): 33-34.

PONGRATZ, H. (1980): Eine Dornschwanz Geschichte. – Die Aquar. Terrar. Z., Stuttgart, 33 (11): 394-395.

RASMUSSEN, N.R. (1996): Hold og opdraet af tornhaleagam Uromastyx acanthinura i terrarium. – Nordisk Herpetologisk Forening, 39 (3): 62-66.

RICHTER, E. (1961): Zwei Arten Dornschwanz-Agamen, Uromastyx asmussi und Uromastyx acanthinurus, also “Haustiere”. – Die Aquar. Terrar. Z., Stuttgart, 14: 374-377.

RODE, E. (1950): Der Dornschwanz (Uromastyx acanthinurus Bell.). – Wschr. Aquar. Terrar., Braunschweig, 44 (8): 24356-247.

SCHLEICH, H.-H., KÄSTLE, W. & K. KABISCH (1996): Uromastyx acanthinura Merrem, 1820; U. (acanthinura) geyri L. Müller, 1922. - In: Amphibians and Reptiles of North Africa. Koeltz, Koenigstein.

STEMMLER, O. (1971): Herpetologische Beobachtungen in Marokko 10: im Lebensgebiet der Dornschwänze.- Aqua Terra, 8: 108-115.

STOLK, A. (1961): Simultaneous staining of Heinz bodies and reticulocytes with new methylene blue N in Uromastix acanthinurus after iproniazid treatment. – Proc. Akad. Wet. Amst., 64C: 579-583.

STOLK, A. (1962): Simultaneous staining of Heinz bodies and reticulocytes with new methylene blue N in Uromastix acanthinurus after iproniazed treatment. – Nature, London, 193: 594.

STOLK, A. (1962): Disatribution of deoxyribonucleic acid in the nucleus of Uromastix acanthinurus. – Proc. Akad. Wet. Amst., 65C: 181-185.

THATCHER, T. (1992): The reproduction in captivity of the North African Spiny-tailed Lizard, Uromastyx acanthinurus. – Brit. Herp. Soc. Bull., 40: 9-13.

UYTTERSCHOUT, G. (1993): Een mislukte kweek met de Afrikaanse doornstaartagame (Uromastyx acanthinurus). – Lacerta 52 (1): 20-22.

Three adult lizards of this species were kept in a terrarium of 1 00x60x70 em. Day temperatures varied between 32-sooc (under a spotlight). At night the temperature dropped to 22 oc. After a six week period of hibernation the male showed sexual interest one of the females. Several matings occurred, after which the female produced a clutch of six eggs. Unfortunately the eggs shrivelled after one day. An explanation for this might be that the female had a shortage of lime when pregnant.

VANSTEENKISTE, E. (2003): Uromastyx acanthinura (MERREM 1820) Noord-Afrikaanse doornstaartagame. – Aquariumwereld, 56 (6): 158-163.

VERNET, R., LEMIRRE, M., GRENOT, C. & J.M. FRANCAZ (1988): Ecophysiological comparisons between two large Saharan lizards, Uromastyx acanthinurus (Agamidae) and Varanus griseus (Varanidae). – J. Arid. Environ., 14: 187-200.

VOGEL, Z. (1951): Werden die nordafrikanischen Dornschwänze und Wüstenwarane das 20. Jahrhundert überleben? – Die Aquarien- und Terrarien-Zeitschrift, 1951 (1): 30-31.

WATSON, G. (1968): Notes on the care of mastigure lizards. - Jersey Wildlife Preservation Trust Special Scientific Report, 5: 48-50.

WATSON, G. (1969): Notes on the care of mastigure lizards Uromastix acanthinurus at Jersey Zoo. – Int. Zoo Yb., 9: 49-50.

WHEELER, S. (1987): Husbandry of the spiny-tailed agama Uromastyx acanmthinurus at the Oklahoma City oo. – Proc. 10th-11th Intl. Herpet. Symp., Thurmont: 107-117.

WHEELER, S. (1990): Husbandry of the spiny-tailed agamas Uromastyx acanthinurus and U. aegyptius at the Oklahoma City Zoo. – Int. Zoo Yb. 29: 70-74.

WERMUTH, H. (1957): Dornschwänze. – Aquar. Terrar., Leipzig, 4: 4.

WIJFFELS, L. (1964): Uromastyx acanthinurus. – Lacerta, 22 (7): 34. (00.498)

WILMS, T. (1995): Uromastyx acanthinura BELL 1825. - Sauria Suppl., Berlin, 17 (3): 333-340. (01.718)

Inhalt:
Einleitung / Bekanntere Synonyme / Schlüssel zu den Unterarten / Beschreibung / Verbreitung, Lebensraum und Ökologie / Pflege und Zucht / Literatur.


WILMS, T. & W. BÖHME (2001): Revision der Uromastyx acanthinura-Artengruppe, mit Beschreibung einer neuen Art aus der Zentralsahara (Reptilia: Sauria: Agamidae). – Zool. Abh. Staatl. Mus. Tierk. Dresden, 51 (1): 73-104.

WILMS, T. & W. BÖHME (1993): Zur intraspezifischen Systematik von Uromastyx acanthinurus Bell 1825 (Sauria; Uromastycinae). – Zus. DGHT-Jahrestag. 1993, Idar Oberstein: 8-9.

WILMS, T. & B. LÖHR (1994): Die Nordfafrikanische Dornschwanzagame - Uromastyx acanthinura - Ökologie, Haltung und Zucht. - elaphe N.F., Rheinbach, 2 (3): 25-29. (01.729)

WILMS, T. & B. LÖHR (1996): De Noorfdafrikaanse Doornstaartagame (Uromastyx acanthinura): systematiek, ecologie, houden in gevangenschap en kweek. –Lacerta, 55 (2): 92-103.

ZWARTEPOORTE, H.A. (1994): Verzorging, paargedrag en meervoudige kweek met de Afrikaanse doornstaartagame (Uromastyx acanthinurus). – Lacerta, 52 (3): 70-75.

ZWARTEPOORTE, H.A. (1995): Pflege, Paarungsverhalten und wiederholte Nachzucht der Afrikanischen Dornschwanzagame (Uromastyx acanthinurus). – elaphe (N.F.), 3 (3): 21-24.

Uromastyx acanthinura acanthinura BELL, 1825


Uromastyx acanthinura nigerima HARTERT, 1913




Uromastyx aegyptia FORSKAL, 1775

Ägyptischer Dornschwanz

ABDEL-KADER, A.-K.M., EL-DALY, E., OKASHA, S. & A.-H. MANSOUR (1995): Carbohydrate metabolism in Malpolon monspessulanus and Uromastyx aegyptius durino the entry, deep and arousal phases of hibernation. – Journal of Thermal Biology, 20 (5): 367-372.

ABU BAKER, M., QUARQAZ, M., RIFAI, L., HAMIDAN, N., AL OMARI, K., MODRY, D. & Z. AMR (2004): Results of herpetofaunal inventory of Wadi Ramm protected area, with notes on some relict species. – Russian Journal of Herpetology, 11 (1): 1-5.

ABU ZINADA, N.Y. (1999): On Atractis species: A nematode from the caecum of dabb-lizard, Uromastyx aegyptius (Anderson, 1896) in Saudi Arabia. – Journal of the Egyptian Society of Parasitology, 29: 21-24.

AGHANAJAFIZADEH, S. & A. MOBARAKI (2018): Habitat Selection by Spiny-Tailed Lizard (Uromastyx aegyptia) in Hengam Island, Iran. – Saudi J. Life Sci., 2018: 414-419.

A population of spiny-tailed lizard (Uromastyx aegyptia) exists in Hengam Island in the Persian Gulf. The field work was carried out over a period of 10 days by the use of a four-member group work in May 2015 through 10 random transects in the whole Island by the use of motorcycle. Once the animal’s cavity was found, some plots with dimensions of 10 by 10 meters were established over the center hole of the spiny-tailed lizard and habitat variables such as the region slope, geographical direction, type of the soil texture, percentage and number of plant cover according to species, distance to the nearest water source, road, and vegetation patches were measured. The habitat factors measured in the control points where there were no signs of the animal’s holes were also measured and compared with the present points. Ultimately, 28 holes of the spiny-tailed lizard in 7colony that had far from each other, were considered in the region. The results showed that the spiny-tailed lizard of the regions with a mean slope of 10% facing towards the north preferred rather semi hard soils (contain gravel and silt) (p<0.05). To protect the population of this species in the region, paying attention to some effective parameters such as the percentage cover of plant species, region slope and Acacia tree are of the most important factors for the use of the habitat of this species.

AL-JOHANY, A. (2003): Daily and seasonal activity anf thermal regulation of the Spiny Tailed Lizard Uromastyx aegyptius in Central Arabia. – Journal of the Egyptian German Society of Zoology, 41A: 585-595.

AL-OGILY, S.M. & A. HUSSAIN (1983): Studies on the ecology of the Egyptian spiny-tailed lizard, Uromastix aegyptius (Forskål, 1775) in the Riyadh region, Saudi Arabia. – Journal of the College of Science King Saud University, 14 (2): 341-351.

ALI-SHTAYEH, M.S. & A.K. HAMAD (1997): Biodiversity in Palestine: West Bank and Gaza Strip. In: Proceedings of the Arab experts meeting on biodiversity in the Arab world. (ed. ACSAD: The Arab Center for the Studies of Arid Zones and Dry Lands (Damascus) and the Technical Secretary of the League of the Arab States (Cairo). 1-5 October 1995, Cairo, Egypt. ACSAD/AS/P171/1997. Damascus. p. 469-529.

ALRASHIDI, M., ABDELGADIR, M. & M. SHOBRAK (2021): Habitat selection by the Spiny-tailed lizard (Uromastyx aegyptia): A view from spatial analysis. – Saudi J. Biol. Sci., 28: 5034-5041.

AL-SALEH, S.A. & A.M. AL-JOHANY, (1995): Studies on the association between the spiny-tauiled lizard Uromastyx aegyptius (Agamidae) and the black scorpion Androctonus crassicauda (Buthidae). – Arab Gulf Journal of Scientific Research, 13 (3): 689-694.

BAIOMY, A.A.A., MANSOUR, A.A. & H.F. ATTIA (2015): Anatomical, histochemical and ultrastructural adaptations of the alimentary canal of the Uromastyx aegyptius and the Spalerosophis diadema to their food habits. - Cercetări Agronomice în Moldova, 48 (4): 95-106.

This study deals with anatomical, histochemical and ultrastructural adaptations of the alimentary canal of the Uromastyx aegyptius and the Spalerosophis diadema to their food habits. Proteins and nucleic acids are highly pronounced in the alimentary tract mucosal cells of the studied two species. A variable distribution of proteins and nucleic acids was observed in the different regions of the alimentary tract mucosa of the studied two species. The activity of alkaline phosphatase showed obvious variations not only among different organs, but also between the two species. At the ultrastructural level, the oesophageal mucosal cells contained oval shaped euchromatic nucleus with condensed chromatin and the perinuclear cytoplasm contained some electron-light vesicles. The gastric mucosal cells contained oval shaped euchromatic nucleus with condensed chromatin and the cytoplasm contained many rough endoplasmic reticulum, also many tonofilaments formed thick bundles which converged at the adherence junction in the lateral membranes. The small and large mucosal intestinal cells contained oval euchromatic nuclei and their cytoplasm contained few electron-light vesicles, also their lateral membranes showed many interdigitations. In spite of their difference in taxonomy, habitat, mode of feeding and their vital activities, they show more or less a similarity in the histochemical and ultrastructural patterns of their alimentary tract mucosa. This study can be applied to distinguish between different species of reptiles and for establishment of natural reserves.

BOUSKILA, A. (1983): The burrows of the dabb-lizard, Uromastyx aegyptius. – Israel Journal of Zoology, 32 (2-3): 151-152.

BOUSKILA, A. (1984): Habitat selection, in particular burrow location in the dabb-lizard, Uromastyx aegyptius, near Hazeva. – Unpublished M. Sc. Thesis, The Hebrew University, Jerusalem.

BOUSKILA, A. (1986): Habitat selection in the desert lizard Uromastyx aegyptius and its relation to the autoecological hypothesis. – In: Dubinsky, Z. & Y. Steinberger (eds.): Environmental quality and ecosystem stability. 3 (A/B), Bar-Ilan University Press, Ramat-Gan.

BOUSKILA, A. (1987): Feeding in the herbivorous lizard Uromastyx aegyptius near Hazeva. – Israel Journal of Zoology, 33: 122.

BRINGSØE, H. (1998): Observations on growth and longevity in Uromastyx aegyptia (FORSSKÅL, 1775) in the Negev Desert, southern Israel (Reptilia: Sauria: Agamidae). – Faun. Abh. Staatl. Mus. Tierkde. Dresden, 21 (Suppl.): 19-21. (00.383)

Kurzfassung:
Am 19.März 1994 wurde ein adultes Männchen von Uromastyx aegyptia mit einer Kopf-Rumpf-Länge (KRL) von 41,8 cm, einer Schwanzlänge (SL) von 32,5 cm und einer Gesamtlänge (GL) von 74,3 cm bei Hazeva in der nördlichen Negev-Wüste gefangen. Vor 13 Jahren und 88 Tagen wies dieses Exemplar folgende Maße auf: KRL 38,7 cm, SL 31,3 cm, GL 70,0 cm. Das geschätzte Alter betrug 1994 mindestens 33 Jahre,was einen Altersrekord für die gesamte Gattung darstellt. Die Größe von 74,3 cm liegt nahe an dem für U. aegyptia bekannten Maximalwert.

CHRISTIE, B. (1993): The Egyptian spiny-tailed lizard (Uromastyx aegypticus) at the Indianapolis Zoo. – Captive Breeding, 1 (3):20-25.

COOPER Jr., W.E. & A.M. AL-JOHANY (2002): Chemosensory responses to foods by an herbivorous acrodont lizard, Uromastyx aegyptius. – J. Ethol., 20: 95-100.

Actively foraging lizards use the lingualvomeronasal system to identify prey by chemical cues, but insectivorous ambush foragers do not. The major clade Iguania includes numerous herbivores and omnivores; among them, two iguanid and one agamine species identify plant and animal foods by tongue flicking, and data suggest that the leiolepidine Uromastyx acanthinurus may as well. We conducted experiments on chemosensory response to food by the herbivorous U. aegyptius. When chemical stimuli were presented on cotton balls in experiment 1, the lizards exhibited greater responsiveness (tongue-flick attack scores) to chemical stimuli from crickets and a preferred plant food (dandelion flowers) than from deionized water. When chemical stimuli were on ceramic tiles in experiment 2, the lizards exhibited greater total tongue flicks to cricket stimuli than to any other stimuli, and to dandelion than to deionized water. Lizards bit more frequently in response to cricket and dandelion cues than to stimuli from a nonpreferred plant (carrot) and deionized water. Tongue-flick attack scores were greater in response to cricket and dandelion stimuli than to carrot or water stimuli. These findings are consistent with the hypothesis that herbivores, even those having ambush-foraging ancestors, use chemical cues to identify potential foods. The data support the hypothesis that chemosensory responses correspond to diet. Because most lizards are generalist predators, studies of herbivorous species can provide important information on possible evolutionary adjustment of chemosensory response to dietary shifts.

CORKILL, N.L. (1928): Notes on the desert monitor (Varanus griseus) and the spiny tailed lizard (Uromastix microlepis). – Journal Bombay Nat. Hist. Soc., 32: 608-610.

CUNNINGHAM, P.L. (2009): Foraging behavior of the Egyptian Spiny-tailed Lizard Uromastyx aegyptia (FORSKÅL, 1775). – Herpetozoa, Wien, 22 (1/2): 92.

DMI'EL, R. & D. RAPPEPORT (1976): Effect of temperature on metabolism during running in the lizard Uromastix aegyptius. – Physiol. Zool., 49 (1): 77-84.

EL-GOHARY, M. & M.B. ASHOUR (1975): Effect of lethal temperature on the histochemical acivity of succinic dehydrogenase in liver, kidney and testis of male Uromastyx aegyptia and Chalcides ocellatus. – Bulletin of the Faculty of Science, Riyad University 7: 215-228.

EL-TROUBI, M.R. (1945): Notes on the cranial osteology of Uromastyx aegyptia (FORSKAL). – Bulletin of the Faculty of Science, Foaud the First University, Cairo, 25: 1-10.

EL-TROUBI, M.R. (1949): The postcranial osteology of the lizard Uromastyx aegyptia (Forskål). – J. Morph. Philadelphia, 84: 281-292.

EL-TROUBI, M.R. & H.M. BISHAI (1959): On the anatomy and histology of the alimentary tract of the lizard Uromastyx aegyptia (Forskal). – Bull. Fac. Sci. Cairo, 34: 13-50.

FOLEY, W.J., BOUSKILA, A., SHKOLNIK, A. & I CHOSHNIAK (1992): Microbial digestion in the herbivorous lizard Uromastyx aegyptius (Agamidae). – Journal of Zoology, London, 226: 387-398.

GILPIN, H.G.B. (1973): The Egyptian Spiny-tailed Lizard. – Aquar. Pondk., 37: 398-399.

GROW, D. (1995): Taxon management account – Egyptian Spiny-tailed Lizard – Uromastyx aegyptius. – City Zoo, S. 1-6.

HENKE,J., HENKE, L., NETTMANN, H.-K. & S. RYKENA (1977): Bemerkungen zum Thema „Ernährungsweise“ von Uromastyx aegyptius (Reptilia, Sauria, Agamidae). – Salamandra, Frankfurt/Main, 13 (2): 112-113.

HUSSEIN, M.F. (1960): The general characteristics of the pancreatic amylase of Uromastyx aegyptia. – Proc. Egypt. Acad. Sci., 15: 53-58.

HUSSEIN, M.F. (1960): The influence of temperature on the activity of the pancreatic amylase of Uromastyx aegyptia. – Proc. Egypt. Acad. Sci., 15: 59-64.

HUSSEIN, M.F. (1963): On the kinetics of heat activation of pancreatic amylase of Uromastyx aegyptia. – Proc. zool. Soc. U.A.R., 1: 117-126.

KEVORK, K. & H.S. AL-UTHMAN (1972): Ecological observations on the Egyptian spiny-tailed lizard Uromastyx aegyptius – Bulletin of the Iraq Natural History Museum, 5: 26-44.

KHALIL, F. & S.R.A. MALEK (1952): Studies on the nervous control of the heart of Uromastyx aegyptia (Forskal). – Physiol. comp., 2: 386-390.

KHALIL, F. & S.R.A. MALEK (1952): The anatomy of the vago-sympathetic system of Uromastyx aegyptia (Forskal) and the significance of its union on the heart beat. – J. comp. Neurol., 96 (8): 497-517.

KHALIL, F. & M. YANNI (1959): Studies on carbohydrates in reptiles. I. Glucose in body fluids of Uromastyx aegyptia. – Z. vergl. Physiol., 42: 192-198.

KHALIL, F. & M.F. HUSSEIN (1962): Studies on the temperature relationships of Egyptian desert reptiles. IV. On the retention of heat of Uromastyx aegyptia, Agama pallida and Chalcides sepoides. – Bull. zool. Soc. Egypt, 17: 80-88.

KHALIL, F. & M.F. HUSSEIN (1963): Ecological studies in the Egyptian deserts. III. Daily and annual cycles of activity of Uromastyx aegyptia, Agama pallida and Chalcides sepoides with special reference to temperature and relative humidity. – Proc. zool. Soc. U.A.R., 1: 93-108.


KHALI, F. & M. YANNI (1959): Studies on carbohydrates in reptiles. II. Effect of temperature, hepactectomy and pancreatectomy on glucose tolerance test and on tissue glycogen in Uromastyx. – Z. vergl. Physiol., 42: 393-402.

KHALIL, F. & M. YANNI (1961): Studies on carbohydrates in reptiles - III. Seasonal changes of glycogen content of tissues, and of relative weights of organs of Uromastyx aegyptia. – Z. vergl. Physiol., 44: 355-362.

KHALIL, F. & M. YANNI (1961): Studies on carbohydrates in reptiles - IV. Effect of adrenaline on blood glucose and tissue glycogen in Uromastyx aegyptia. – Z. vergl. Physiol., 44: 363-370.

KHALIL, F. & M. YANNI (1962): Studies on carbohydrates in reptiles- V. Effect of insulin on blood glucose and tissue glycogen in Uromastyx. – Z. vergl. Physiol., 45: 326-336.

MICHAELSON, J. (2007): Diagnosis, treatment and remission of Dermabacteriosis in a Uromastyx lizard (Uromastyx aegyptius). – Proceedings of 14th ARAV Conference, New Orleans, Louisiana.

OKASHA, S., ABDEL-KADER, A.-K.M., EL-DALY, E. & A.-H. MANSOUR (1995): The concentration of norepinephrine, dopamine and serotonin in serum of Malpolon monspessulanus and Uromastix aegyptius during the different phases of the hibernation cycle. – Journal of Thermal Biology, 20 (5): 373-379.

SA´DI, M.N. & M. ISLAM (1977): A study of the histology of the adrenal gland and some blood constituents of the captive lizard Uromastyx aegyptia. – Recordings Conf. boil. Aspects Saudi Arabia, 1: 296-309.

STEJSKAL, A. (1934): Uromastix spinipes. – Wochenschrift für Aquarien und Terrarienkunde 1934: 455-456.

THROCKMORTON, G.S. (1980): The chewing cycle in the herbivorous lizard Uromastix aegyptius (Agamidae). – Arch. Oral Biol., 25 (4): 225-233.

The chewing cycle was examined using cinematography at 32 frames per second (fps) and simultaneous electromyography of selected jaw muscles. Three types of food of various sizes were fed to the animals. Seven feeding behaviours were distinguished and comparisons between the chewing cycles in these behaviours made. The basic chewing cycle consisted of 4 phases: (1) slow opening, (2) fast opening, (3) closing and (4) stationary. The timing of these phases, the maximum gape angle used and the action of the tongue varied with each type of behaviour. Differences in the timing of the chewing cycle were related to both the size and texture of the food and to tongue position. The jaw adductor muscles were active only during closing, but opening muscles were active during fast opening and occasionally also during closing. Some behaviours showed differences in the level of muscle activity. Thus, Uromustix has a complex chewing cycle similar to the mammalian one. It is suggested that the mammalian chewing cycle developed from the reptilian chewing cycle by the addition of transverse movements of the lower jaw.

WHEELER, S. (1990): Husbandry of the spiny-tailed agamas Uromastyx acanthinurus and U. aegyptius at the Oklahoma City Zoo. – Int. Zoo Yb. 29: 70-74.

WILLIAMS, J.B., TIELEMAN, B.I. & M. SHOBRAK (1999): Lizard burrows provide thermal refugia for larks in the Arabian desert. – Condor, 101 (3): 714-717.

WILMS, T. (2007): Als Dornschwanzforscher im Morgenland. Dornschwanzagamen in Arabien – wie bedroht sind sie eigentlich? – Reptilia, Münster, 12 (3): 10-11.

WILMS, T. & S. ARTH (2007): Als Dornschwanzforscher im Morgenland. Projekt Dornschwanzagame im „Help Center“. – Reptilia, Münster, 12 (4): 12-13.

WILMS, T. & W. BÖHME (2000): A new Uromastyx species from south-eastern Arabia, with comments on the taxonomy of Uromastyx aegyptia (FORSKAL, 1775). [Eine neue Uromastyx-Art aus dem südöstlichen Arabien, mit Kommentaren zur Taxonomie von Uromastyx aegyptia (FORSKAL, 1775)]. – Herpetozoa, Wien, 13 (3/4): 133-148.

Es wird ein Überblick über die taxonomischen Verhältnisse innerhalb der Uromastyx aegyptia-Gruppe gegeben, insbesondere wird der taxonomische Rang der Taxa aegypita und microlepis diskutiert. Es werden ein Neotypus for aegyptia and und Lectotypus für microlepus designiert.
Uromastyx leptieni sp. n. wird aus dem südöstlichen Arabien beschrieben. Die neue Art unterscheidet sich von ihrem Schwestertaxon U. aegyptia durch größere Ventralia und durch eine abweichende Färbung und Zeichnung der Jungtiere. Uromastyx leptieni sp. n. ist im nördlichen Oman und im Osten der Vereinigten Arabischen Emirate beheimatet.

WILMS, T., EID, E.K.A., AL JOHANY, A.M.H., AMR, Z.S.S., ELS, J., BAHA EL DIN, S.M., DISI, A.M., SHARIFI, M., PAPENFUSS, T.J., SHAFIEI BAFTI, S. & Y.L. WERNER (2017): Uromastyx aegyptia. The IUCN Red List of Threatened Species 2012: e.T164729A115304711. ERRATA VERSION.

This errata assessment has been created because the map was accidentally left out of the version published previously.

YOSEF, R. & N. YOSEF (2010): Cooperative hunting in Brown-necked Raven (Corvus rufficollis [ruficollis]) on Egyptian Mastigure (Uromastyx aegyptius). J. Ethol., 28 (2): 385-388.

We describe cooperative hunting by Brownnecked Raven (Corvus ruficollis) on Egyptian Mastigure (Uromastyx aegyptius) in the Arava Valley, Israel. At first, in all nine observed hunts, the ravens were observed to be in the vicinity and were seen simultaneously. The Mastigure was almost always at a distance from the burrow entrance and either foraging on the bushes or lying flattened on a bush sunning itself. The attack started when a circling pair of ravens flew in at high speed and landed on the entrance of the burrow, cutting off the escape route of the lizard. Following this maneuver, the other ravens attacked the lizard. The ravens pecked randomly at the most exposed part of the lizard, eventually causing ist death. Only when the lizard was evidently dead did the two individuals that blocked the escape route join in the feeding ravens.

ZAHER, M., EL-GHAREEB, A.-W., HAMDI, H., ESSA, A. & S. LAHSIK (2012): Anatomical, Histological and Histochemical Adaptations of the Reptilian Alimentary Canal to Their Food Habits: I. Uromastyx aegyptiaca. – Life Sci. J., 9 (3): 84-104.

A series of studies was carried out to elucidate the relationship between the microscopic anatomy of the alimentary canal and the food habits in reptiles. Three reptiles were chosen according to different feeding habits, Uromastyx is a herbivouous, Chameleon is an insectivorous, while Crocodilys is a carnivorous reptile. So, it is obvious that the anatomy as well as the histology of the alimentary tract of reptiles demonstrate certain specific characteristics of functional adaptations as a reflection of the herbivorous, carnivorous and insectivorous mode of feeding. The anatomical and histological study of the alimentary canal of Uromastyx aegyptiaca was carried out. A comparison between the different histological structures found and those known in other reptiles was done. The straight oesophagus is lined with ciliated epithelium and goblet cells, leading to the stomach which consists of two portions, fundic or oxyntic and pyloric or mucous. The small intestine is comparatively short although the animal is purely herbivorous. It consists of the duodenum and ileum. The duodenual mucosa is in the form of leaf-like villi provided with shallow branched Lieberkühn crypts at their bases. The ileum is devoid of found glands. The large intestine is formed of a well developed large caecum, colon and rectum. At the posterior edge of the caecum there is a small blind sac which is considered as the appendix. The caecum which is devoid of glands is lined with simple columnar cells of a special type. While the ileo -caecal valve is in the form of a characteristic well developed protrusion, the caeco-colic valve is formed of a flap arising from one side. The mucosa of the colon is folded and lined with goblet and columnar cells, while that of the rectum is, more or less, straight and is rich in goblet cells and lymph spaces. The distribution and localization of different carbohydrate categories (PAS-positive material, mucopolysaccharides) were studied in the mucosal epithelium of the alimentary canal of Uromastyx aegeptiaca. The goblet cells of the oesophagus are rich in acid mucpolysacharides, those of the small and large intestine contained smaller amounts. Neutral mucpolysacharides were found in small to moderate amounts, being most obvious in the gastric mucosa. Mode of feeding as well as habitat, show, more or less a close similarity in the histochemical pattern of their gut mucosa as regards to the distribution and localization of proteins and nucleic acids.

ZAHABIAN, E. (2018): Relations between the Spiny-tailed Lizard (Uromastyx aegyptia) and its environment. - Thesis. Ben Gurion University of the Negev. 44 pp.

The large herbivorous lizard, Uromastyx aegyptia, is an important component of the ecosystem in the desert environments, because it has many interactions with a variety of organisms and due to its contribution as an ecosystem engineer. Uromastyx aegyptia creates two new patch types as an allogenic ecosystem engineer. First, the lizards excavate massive below-ground burrow structures, which provide shelter for a large numbers of other organisms (32 species are known so far). Second, while excavating its burrow, U. aegyptia moves deeper soil layers to the surface around the burrow entrance, forming mounds. These mound contain low salinity, in contrast to the nearby reg plain, and thus the lizard enable the growth of vegetation around the burrow entrance and creates "gardens" with mostly annual plants. Except for the Uromastyx lizards that feed from the new patch, other herbivores also benefit from this food source in this arid area: the Cape hare (Lepus capensis) and Dorcas gazelles (Gazella dorca (In addition, U. aegyptia has a multitude of interactions with the keystone species acacia trees (Vachellia tortilis and V. raddiana). There might be a limited negative effect of the herbivore lizard on the trees, because the acacia tree serves as one of the main food sources for U. aegyptia. However, in this study, I examined if there is a positive effect of U. aegyptia on seed germination of V. tortilis, which is known to suffer from heavy infestation by Bruchid seed beetles. Germination trials revealed that passage through the U. aegyptia gut kills the seed beetles larva before it damages the seed, thus increasingseed viability and germination. Moreover, U. aegyptia functions as a transport ecosystem engineer (endozoochory), distributing feces near acacia trees (mostly found in Wadis) and near U. aegyptia burrows. In both locations, soil salinity is low and the lizard improves the chances for establishment of acacia seedlings that originate from seed that passed through the intestines of the lizard. By examining the amount of trees at different distances from active and inactive burrows I found that active U. aegyptia burrows are located near fewer acacia trees compared to the inactive burrows. I assume that the lizards' need for a large field of vision causes this difference. The intricate relationship between the lizards and the trees seem to benefit both organisms. Due to its many positive interactions with the environment, I call for the preservation of the endangered U. aegyptia, as a central component in this unique arid ecosystem.


Uromastyx aegyptia aegyptia (FORSKAL, 1775)


Uromastyx aegyptia
leptieni WILMS & BÖHME 2000


Uromastyx aegyptia microlepis ARNOLD, 1980

ABDEL-FATTAH, R.F. & F. AL-BALOOL, (1977): The effect of hormones on glucose absorption by the intestine of the lizard Uromastyx microlepis. Part 1. Thyroxine and adrenaline. – Herpetologica, 33 (1): 102-108.

ABDEL-FATTAH, R.F. & F. AL-BALOOL, (1977): The effect of hormones on glucose absorption by the intestine of the lizard Uromastyx microlepis. Part 2. Insulin and Glucagon. – Herpetologica, 33 (4): 447-451. (01.720)

The effect of insulin and glucagon on the rate absorption from the small intestine of Uromastyx microlepis was studies. An in vivo method, involving the use of loops of small intestine of the anesthetized lizard, was used. Insulin had no effect on glucose absorption. The increase in glucose absorption from alloxan-treated lizards is due to insulin deficiency rather than from the Cytotoxic effect of alloxan, since such effect was reversed by the addition of insulin. In both glucagon and cobaltous chloride-treated lizards there was no change in glucose absorption.

ABU ZINADAH, O.A. (2008): Variation in testicular histology of the Spiny Tailed Lizard Uromastyx aegyptius microlepis during hibernation and active periods. – Pakistan Journal of Biological Sciences, 11 (12): 1615-1619.

AL-BADRY, K.S. & R.F. ABDEL-FATTAH (1975): Haematological studies on some reptiles from Kuwait. Part 2. Some corpuscular constants, blood glucose, total plasma protein and electrophoretic examination of blood proteins of the lizard Uromastix microlepis. – Journal Univ. Kuwait (Sci.), 2: 153-158.

AL-HAZMI, M.A. (2001): Feeding Behaviour and Food Selection of Dhab Uromastyx microlepis From Wild Vegetation. - Qatar Univ. Sci. J. 21: 65-73.

The present study deals with the food selection and feeding behaviour of Uromastyx microlepis 'dhab' spiny tailed lizard during a period of one complete year inhabiting AL-Gassim desert area. Climatically the area can be classified as a hyper arid region. The behaviours of Dhab were studied under natural conditions, when left to roam freely and chose its food from wild vegetation. 54 plants species, belonging to 24 families were recorded, among which 37 plants species were recognized as preferred host plants for U. microlepis. Palatability of the vegetation may vary with the seasons. Dhab is a herbivorous animal preferring tender leaves, shoots, flowers, buds and fruits of shrubs widely spread in the area. Stomach contents revealed that Dhab may also take insects and stones (gravel) at times. There were significant differences in lizard body weight over the year. The maximum body weighs were recorded in the months of June and February respectively.

AL-HAZMY, M.A. (2002): Feeding behavior and food selection of Dhab spiny-tailed Lizard Uromastyx microlepis from wild vegetation. – Journal of the Egyptian German Society of Zoology, 37A: 185-203.

AL-HAZMY, M.A., ASSAGGAFF, A.I. & A.A. AL-ANZY (2005): Body temperatures and behavioral thermoregulation of Dhab Spiny-Tailed lizard Uromastyx microlepis in central Saudi Arabia. – Journal of the Egyptian German Society of Zoology,47A: 1-16.

AL-SADOON, M.K., PARAY, B.A. & H.S. AL-OTAIBI (2016): Survey of the reptilian fauna of the Kingdom of Saudi Arabia. V. The lizard fauna of Turaif region. - Saudi Journal of Biological Sciences (2016), http://dx.doi.org/10.1016/ j.sjbs.2016.04.005.

AL-SALEH, A.A. & M.A. KHAN (1983): Morphology of the embryo of the Spiny-Tailed Lizard, Uromastix microlepis Blanford 1874. – Arab Gulf J. Sci. Res., 1 (1): 203-212.

AMER, S.A.M., MONTASER, M.M. & Y. KUMAZAWA (2011): Preliminary molecular variability within Uromastyx aegyptia microlepis (Reptilia: Agamidae) inhabiting Saudi Arabia. – Wld. App. Sci. J., 12 (11): 1955-1961.

ARCA-RUIBAL, B. & T.A. BAILEY (2006): A fluoroscopic study of intestinal transit in a Spiny-tailed Lizard. - Exotic DVM, 8 (4): 31-34.

BLANFORD, W.T. (1874): Descriptions of two Uromasticine lizards from Mesopotamia and Southern Persia. - Proc. Zool. Soc. London, 1874: 656-161.

CASTILLA, A.M., RICHER, R., HERREL, A., CONKEY, A.A.T., TRIBUNA, J. & M. AL-THANI (2011): First evidence of scavenging behaviour in the herbivorous lizard Uromastyx aegyptia microlepis. - Journal of Arid Environments 75: 671-673.

In this study, we provide the first evidence of scavenging behaviour in the spiny-tailed agamid lizard (Uromastyx aegyptia microlepis), a species which heretofore has been considered a strict desert herbivore. We examined 294 faecal samples collected in the desert of Qatar and found that 84% of the faeces (n = 247) contained exclusively plant material. Grains of barley (Hordeum vulgare) were present, suggesting that Uromastyx can benefit from the food provided to livestock when wild plants are scarce. We also found remains of invertebrates, vertebrates and stones in the lizard faeces. The type of vertebrate remains found suggests scavenging behaviour and some flexibility in feeding behaviour where food resources are scarce. Overgrazing by camels and goats in the area may affect food availability for Uromastyx populations, suggesting the need for conservation measurements in the Qatar desert.

CLOUDSLEY-THOMPSON, J.L. (1983): Body temperature and defense in Uromastix microlepis. – Br. Herpetol. Soc. Bull., 7: 77.

CUNNINGHAM, P. (2000): Daily activity and diet of a population of the Spiny-tailed Lizard, Uromastyx aegyptius microlepis, during summer in the United Arab Emirates. – Zoology in the Middle East, Heidelberg, 21: 37-46.

Kurzfassung:
Eine Untersuchung an 20 Individuen der Dornschwanzagame Uromastyx aegyptius microlepis im Mai und Juni 1999 in den Vereinigten Arabischen Emiraten ergab, dass die Art tagaktiv ist und am Morgen bei Temperaturen um 30°C aktiv wird. Die meiste der auf der Erdoberfläche verbrachten Zeit wird mit Sonnenbaden verbracht (13,8 %), gefolgt von Nahrungssuche (4,6 %) und Höhlenbau (0,4 %). Den größten Teil des Tages (81,2 %) verbringen die Tiere unter der Erde, und nur 18,8 % der Aktivitäten werden auf der Erdoberfläche ausgeführt. Bei Temperaturen um 40°C weichen die Tiere unter die Erdoberfläche aus. Die Pflanzen Pennisetum divisum und Stipagrostis plumosa werden bei der Nahrungsaufnahme intensiv genutzt, und eine Kotanalyse zeigt die herbivore Natur der Art; nur 1,2 % der Kotballen enthielt Reste von Insekten.

CUNNINGHAM, P. (2001): Spiny-tail Lizard Uromastyx aegyptius microlepis diet – a study in the United Arab Emirates. – Tribulus, Abu Dhabi, 11 (2): 28-29.

CUNNINGHAM, P. (2001): Notes on the diet, survival rate, and burrow specifics of Uromastyx aegyptius microlepis from the United Arab Emirates. – Asiatic Herpetological Research, Berkeley, 9: 30-33.

CUNNINGHAM, P.L. (2007): Morphological characteristics of the Spiny-tailed Lizard, Uromastyx aegyptius microlepis (Agamidae), from the United Arab Emirates. – Zool. Middle East, 40: 105-107.

CUNNINGHAM, P.L. (2008): Uromastyx aegyptius microlepis (Blanford, 1874) Egyptian Spiny-tailed Lizard. Prey. – Afr. Herp News, 46: 12-15.

CUNNINGHAM, P.L. (2009): Seasonal variation in daily activity pattern in a population of spiny-tailed lizard, Uromastyx aegyptius microlepis, from the United Arab Emirates. – Russ. J. Herpetol., 16 (1): 6-10.

Seasonal comparisons of the daily activity pattern of 20 Uromastyx aegyptius microlepis individuals, indicate that they are diurnal and emerge early in the morning during summer and spring (6:30 – 8:30) with average ambient temperatures between 27.5 – 28.5°C and later during winter and autumn (10:00 – 12:00) with average ambient winter temperatures of 21.6°C. More time is spent basking during winter (182 ± 80.4 min per individual) than during any other month. Den clearing activities mainly take place during autumn with 69% of the observed individuals involved in this activity then. Foraging mainly takes place during autumn (62%, 11:00 – 12:00) and spring (70%, 10:00 – 11:00) with 46.5 ± 40.5 min (autumn) and 40.4 ± 15.7 min (spring) on average per individual spent on this activity. Foraging distance from the burrow is highest during the dry summer months with an average distance of 81.9 ± 74.9m per individual observed. Retreating underground takes place with average ambient temperatures varying from 23.6 ± 0.6°C during winter to 35.7 ± 2.2°C during summer.

DICKSON, V.P. (1965): Plants eaten by Uromastix microlepis Blanford and other notes on this lizard in eastern Arabia. – J. Bombay nat. Hist. Soc., 62: 565.

KLEIN, W., ANDRADE, D.V., WANG, T. & E.W. TAYLOR (2002): Effects of temperature and hypercapnia on ventilation and breathing pattern in the lizard Uromastyx aegyptius microlepis. – Comparative Biochemistry and Physiology Part A, 132: 847-859.

LOTFI, S. & K. ABDELMAJID (2014): The comportment, morphology and body growth of the juvenile specimen of the herbivorous lizard Uromastyx aegyptius microlepis. - Life Science Journal 11 (5): 234-237.We assessed the behaviour and the growth of five body homogen and juvenile specimen of Uromastyx aegptius for 17 days. Daily observations were made and weekly measurements were collected. Obtained results showed that the studied spiny tailed lizard increase his body mass and length during the period of high temperature and continue to consume food. When the winter weather become and temperature decreased considerably Animal stop food consumption and start to lose body mass. As for some reptile, the high temperature and direct sunlight change the skin colour of Uromastyx aegyptius.

MANDAVILLE, J. (1965): Plants eaten by Uromastyx microlepis (BLANFORD) and other notes on this lizard in eastern Arabia. – Journal of the Bombay Natural History Society, Bombay, 62 (1): 161-163.

MARTIN, J., CASTILLA, A.M., LÓPEZ, PILAR, AL-JAIDAH, M., AL-MOHANNADI, S.F. & A.A.M. AL-HEMAIDI (2016): Chemical signals in desert lizards: Are femoral gland secretions of male and female spiny-tailed lizards, Uromastyx aegyptia microlepis adapted to arid conditions? – J. Arid Environm., 127: 192-198.

Many lizards use femoral gland secretions in intraspecific chemical communication, but specific compounds have been identified in only a few species. Chemical composition of secretions may depend on phylogeny, but it may also evolve to maximize efficacy of signals in a given environment. In deserts, the extreme dry and hot environmental conditions are hostile for chemical signals and, therefore, we expected desert lizards to have secretions with highly stable compounds. Using GC-MS, we identified 74 lipophilic compounds in femoral secretions of male and female spiny-tailed lizards, Uromastyx aegyptia microlepis (Fam. Agamidae), from the Qatar desert. Compounds included mainly steroids and fatty acids, but also terpenoids, ketones, tocopherol, aldehydes and alcohols. We found differences between males and females; males had higher proportions of fatty acids and tocopherol, but lower proportions of ketones than females. Contrary to expectations, the most abundant compounds were not stable in the desert climatic conditions at the surface. However, secretions could be rather adapted to microclimatic conditions inside burrows where these lizards spend long periods of time. We suggest that in addition to phylogenetic and environmental characteristics, we should know the ecology of a lizard species before making generalizations on the potential characteristics of its chemical signals.

ROBINSON, M.D. (1995): Food plants and energetics of the herbivorous lizard, Uromastyx aegyptius microlepis, in Kuwait. – Journal of the University of Kuwait (Science), 22 (2): 255-262.

ROBINSON, P.L. (1976): How Sphenodon and Uromastyx grow their teth and use them. – In: Bellairs, A. & B. Cox (eds.): Morphology and Biology of reptiles. – Linnean Society Symposium Seriens No. 3: 43-64.

WILMS, T. (2007): Unternehmen „Dornschwanzagame“: Das Reptilium-Freilandforschungsprojekt in Saudi-Arabien. – Draco, Münster, 8 (3): 45-53.

WILMS, T. (2010): On the thermobiology and activity pattern of the large herbivorous desert lizard Uromastyx aegyptia microlepis Blanford, 1875 at Mahazat As-Sayd protected area, Saudi Arabia. Abstracts of the Second International Symposium on Agamid Lizards «DeAgamis2». - Current Studies in Herpetology, 10 (3/4): 157.

WILMS, T. & M. WAGEMANN (2006): Als Dornschwanzforscher im Morgenland. – Reptilia, Münster, 11 (5): 12-13.

WILMS, T. & M. WAGMANN (2007): Als Dornschwanzforscher im Morgenland. Dornschwanzagamen – Überlebenskünstler in der Wüste. – Reptilia, Münster, 12 (2): 10-11.

WILMS, T., WAGNER, P., SHOBRAK, M. & W. BÖHME (2009): Activity profiles, habitat selection and seasonality of body weight in a population of Arabian Spina-tailed Lizards (Uromastyx aegyptia microlepis Blanford, 1875; Sauria: Agamidae) in Saudi Arabia. – Bonner zoologische Beiträge, Bonn, 56 (4): 259-272.

Abstract:
A field study was carried out on the Arabian Spiny-tauiled Lizard (Uromastyx aegyptia microlepis) in Saudi Arabia (Mahazat as-Sayd Protected Area) focusing on seasonal differences in activity, body condition and on parameters influencing selection of burrow sites in this large desert-dwelling lizard. Uromastyx a. microlepis is highly seasonal in respect to activity/visibility outside of its burrows which provide shelter against unfavorable climatic conditions. At Mahazat as-Sayd these lizards exhibit a boimodal activity in spring and summer while activity in autumn is unimodal with a peak at early afternoon, but the overall activity is generally low at this time of the year. More than 73 % of total observed yearly activity takes place in spring and early summer. Seasoinal changes in availability of food result in differences of the animals’ body condition, witrh a significant decrease of body-mass between spring / autumn and summer / autumn respectively. Selection of burrow sites is largely influenced by soil type and vegetation coverage.


WILMS, T., WAGNER, P., SHOBRAK, M., LUTZMANN, N. & W. BÖHME (2010): Aspects of the ecology of the Arabian spiny-tailed lizard (Uromastyx aegyptia microlepis BLANFORD, 1875) at Mahazat as-Sayd protected area, Saudi Arabia. – Salamandra, Rheinbach, 46 (3): 131-140.

ZARI, T.A. (1991): Effect of temperature on resting metabolic rate of the spiny tailed lizard, Uromastyx aegyptius microlepis. – Journal of the Egyptian German Society of Zoology, 4: 9-18.




Uromastyx alfredschmidti WILMS & BÖHME, 2000

JOGER, U. & W. BÖHME (2006): Uromastyx alfredschmidti. – In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. Downloaded on 05 March 2011.

SINDACO, R., WILMS, T.M. & A. VENCHI (2012): On the distribution of Uromastyx alfredschmidti Wilms and Böhme, 2000 (Squamata: Agamidae: Uromastycinae). – Acta Herpetologica, 7 (1): 23-28.

The article reports on two new findings of Uromastyx alfredschmidti Wilms and Böhme, 2000 that allow for a more precise definition of its distribution range and, consequently, a new conservation assessment in compliance with IUCN parameters. Following review of available museum specimens, the Hoggar Mts. (Algeria), should not to be considered within the natural range of the species. Nomenclatorial clarifications on existing literature are also provided.


Uromastyx benti ANDERSON, 1894

Bent´s Mastigure

ANDERSON, J. (1894): On two new species of agamoid lizards from the Hadramut, South-Eastern Arabia. – Ann. Mag. Nat. Hist. (6) 14: 377.

GRAY, R. (1999): Captive reproduction of “Rainbow Benti” Spiny-tailed Lizards, Uromastyx benti. – Vivarium, 10 (2): 44-45.

GROSSMANN, W., ZWANZIG, B.-M., KOWALSKI, T. & H.-J. ZILGER (2015): Anmerkungen zu Verbreitung, Lebensweise und Gefährdung der Jemen-Dornaschwanzagame Uromastyx benti (ANDERSON, 1894) im Sultanat Oman. – Sauria, Berlin, 37 (3): 3-15.

PIERSON, T.W. & T.J. PAPENFUSS (2012): Natural history notes: Uromastyx benti (Bent's Spiny-tailed Lizard). Maximum elevation. – Herpetol. Rev., 43 (3): 491.

SCHELER, B., FRAHM, S. & B.-M. ZWANZIG (2023): Ein neuer Fundort von Uromastyx benti (ANDERSON, 1894) im Dhofar, Sultanat Oman. – Sauria, Berlin, 45 (1): 59-62.

SEUFER, H., KOWALSKI, T., PROKOPH, U. & H.-J. ZILGER (1998): Erstnachweis von Uromastyx benti ANDERSON, 1894 für den Oman (Provinz (Dhofar). – herpetofauna, Weinstadt, 20 (114): 22-23. (02.702)

First record of Uromastyx benti for Oman (Prov. Dhofar). Details of the sightings, on other syntopic reptile species, on climatic conditions as well as on the endangered situation of the animals are presented.

STEINDACHNER, F. (1899): Ueber eine neue Uromastix-Art, U. simonyi. - Anz. Akad. Wiss. Wien, math.-naturwiss. Kl., 36: 143-144.




Uromastyx dispar HEYDEN, 1827

Sudan Mastigure

HEYDEN, G.H.G. von (1827): Description of Uromastix dispar in Reptilien. In: Rüppell: Atlas zu der Reise im nördlichen Afrika, Erste Abtheilung – Zoologie: 1-24. – Senckenb. Naturf. Ges., Frankfurt am Main, 1826.

MOHAMMED, E.H.A. & D.W. HAMMAD (2008): Notes on a sympatric population of two species of spiny-tailed lizards in Sudan: Uromastyx dispar Heyden, 1827, and U. ocellata Lichtenstein, 1823 (Sauria: Agamidae). - Zoology in the Middle East 44: 51-56.A series of 27 Uromastyx was collected at Abu Hammad, Nile State, northern Sudan, consisting of two distinct, sympatric species: three U. dispar Heyden, 1827 and 24 U. ocellata Lichtenstein, 1823. The morphological analysis of these specimens reveals some data exceeding the previously known range of variability in these two species, including the maximum length.

OTT, M. (2001): Anmerkungen zum Artikel von ROGNER (2000) über die Mali-Dornschwanzagame. – Aquarium (Bornheim), 380: 66-68.

ROGNER, M. (2000): Die Mali-Dornschwanzagame. Zur Pflege und Zucht von Uromastyx maliensis. – Aquarium (Bornheim), 377: 62-68.

Uromastyx dispar dispar HEYDEN, 1827


Uromastyx dispar flavifasciata MERTENS, 1962

MATEO, J., GENIEZ, P., LÓPEZ-JURADO, L. & J. BONS (1998): Chorological analysis and morphological variations of Saurians of the genus Uromastyx (Reptilia, Agamidae) in western Sahara. Description of two new taxa. – Rev. Esp. Herp., 12: 97-109.

The description of a new species of the genus Uromastyx is proposed on the basis oftwo specimens from the Adrar Souttouf in Western Sahara. This taxon differs greatly from U. acanthinura on account its larger size, the much larger number of scales, the arrangement of tubercules on its upper thighs, the different habitus and colouring. These morphological features mean it closely resembles U. aegyptia. The existence of a relictual U. aegyptia-group throughout the Sahara is suggested. In addition, the morphological variations in Spiny-tailed agamas (or Mastigures) ofthe Uromastyx acanthinura group in the west ofthe Sahara are briefly analysed. This produces evidence for the existence of a species proper to Western Sahara and surrounding areas, Uromastyx jlavifasciata, represented by two subspecies: U. f jlavifasciata in the north and U. f obscura subsp. nov. in the south. The latter new form is characterised by uniformly black colouring, even in active individuals. This work also demonstrates that Uromastyx acanthinura werneri does not penetrate Western Sahara and that ist distribution is parapatric with that of U. jlavifasciata. Lastly, the presence of U. maliensis is suspected in the Adrar Atar (Mauritania) and the Adrar Souttouf (Western Sahara).

MERTENS, R. (1962): Bemerkungen über Uromastyx acanthinurus als Rassenkreis. – Senck. biol., Frankfurt/Main, 43 (6): 425-432.

WILMS, T., RUF, D. & B. LÖHR (2003): Zur Haltung und Nachzucht zweier Taxa aus dem Uromastyx-acanthinura-Komplex: Uromastyx geyri MÜLER, 1922 und Uromastyx dispar flavifasciata MERTENS, 1962 (Reptilia: Agamidae: Leiolepidinae: Uromastyx). – Draco, Münster, 4 (2): 42-55.

Inhalt:
Die Arten des Uromastyx-acanthinura-Komplexes, Verwandtschaftliche Verhältnisse, Aussehen, Nordafrikanische Dornschwanzagame (Uromastyx acanthinura), Südsaharische Dornschwanzagame (Uromastyx dispar), Geyrs Dornschwanzagame (Uromastyx geyri), Schmidts Dornschwanzagame (Uromastyx alfredschmidti), Gefährdung und Importsitiuation, Haltung und Vermehrung von Uromastyx geyri, Terrarieneinrichtung und Klima, Nahrung, Inkubation und Schlupf, Haltung und Vermehrung von Uromastyx dispar flavifasciata, Nahrung, Fortpflanzung, Inkubation und Schlupf, Diskussion.


Uromastyx dispar hodhensis
TRAPE, TRAPE & CHIRIO 2012

TRAPE, J.F., TRAPE, S. & L. CHIRIO (2012): Description of Uromastyx dispar hodhensis. - In: “Lézards, crocodiles et tortues d'Afrique occidentale et du Sahara”. IRD Éditions Marseille. pp. 33-36.

Uromastyx dispar maliensis JOGER & LAMBERT,1996

GRAMENTZ, D. (2001): Zum Komfortverhalten von Uromastyx dispar maliensis JOGER & LAMBERT, 1996. – Sauria, Berlin, 23 (4): 37-39. (01.062)

Ausstreckbewegungen von mindestens einer Extremität wurden bei Körpertemperaturen von 33,2 – 38,3°C (x = 36,2°C; n = 24) beobachtet. Keine Ausstreckbewegungen wurden bei Körpertemperaturen von 33,3 – 38,9°C (x = 36,1°C; n = 14) bei sich sonnenden Individuen beobachtet. Die maximale beim Sonnen gemessene Körpertemperatur betrug 38,9°C. Die Körpertemperatur beim Verlassen der Wohnhöhle variierte zwischen 24,5 und 29,6°C (x = 27,2°C; n = 11). Die Körpertemperatur beim Ausstrecken von Extremitäten ist hochsignifikant verschieden zur Körpertemperatur beim Verlassen der Wohnhöhle (P < 0,001). In 56,8 % von 37 beobachteten Fällen wurde ein Hinterbein ausgestreckt, in 43,2 % einVorderbein (P < 0,05). Bei 84,4 % von 32 Ausstreckbewegungen wurde nur eine Extremität gestreckt, bei 15,6 % zwei Extremitäten gleichzeitig (P < 0,001). Die Körpertemperatur war stärker mit der Bodentemperatur korreliert (r = 0,91), als mit der der Luft (r = 0,77). Beide Korrelationen sind statistisch hochsignifikant (P < 0,001).

HOFSTRA,G. (2001): Spiny-tailed lizard from Mali: ´Uromastyx maliensis`. – Pod@rcis, 2 (2): 44-53. (02.296)

JOGER, U. & M.R.K. LAMBERT (1996): Analysis of the herpetofauna of the Republic of Mali, 1. Annotated inventory, with description of a new Uromastyx (Sauria: Agamidae). – J. Afri. Zool., 110 (1): 21-51.

ROGNER, M.(2007): Die Mali-Dornschwanzagame, Uromastyx dispar maliensis. – Draco, Münster, 8 (3): 30-41.

RÖSSEL, D. (1998): Nochmals: Beschlagnahme von Dornschwanzagamen (Uromastyx maliensis). – Reptilia, Münster, 3 (5): 11.

WILMS, T. & H.D. MÜLLER (1998): Haltung und Zucht der Mali-Dornschwanzagame, Uromastyx maliensis JOGER & LAMBERT, 1996. – herpetofauna, Weinstadt, 20 (112): 25-33. (02.712)

Es wird über die erfolgreiche Haltung und Zucht der Mali-Dornschwanzagame (Uromastyx maliensis) berichtet und es werden die Kenntnisse zur Fortpflanzungsbiologie dieser Art zusammengefaßt. Neben der Beschreibung der Haltungsbedingungen stellt dieser Bericht erstmals Informationen zum Verhalten, zur Dynamik der Farb- und Zeichnungsveränderung sowie der Eimaße zu Verfügung. Eiablagen fanden im Mai statt. Die Eizahl beträgt bis zu 24 Eier. Die Jungtiere schlüpften nach 124-130 Tagen bei einer Temperatur von 29°C ± 1°C.


Uromastyx geyri VALENCIENNES, 1854

Sahara Mastigure

LÖHR, B. (2004): Geyrs Dornschwanzagame (Uromastyx geyri). – Natur und Tier-Verlag, Münster. 64 S.

MÜLLER, L. (1951): Aufstellung eines Neotypus von Uromastyx geyri L. Müller. – Bonn. zool. Beitr., Bonn, 2: 109-111.

PASMANS, F., MARTEL, A. & S. BOGAERTS (2006): De Sahara doornstaartagame (Uromastyx geyri) in het terrarium. – Terra 42 (5): 20-23.

RADOVANOVIC, A. (2020): Husbandry and reproduction of the Saharan spiny-tailed lizard, Uromastyx geyri.Herp. Bull., (152): 11-14.

SCHLEICH, H.-H., KÄSTLE, W. & K. KABISCH (1996): Uromastyx acanthinura Merrem, 1820; U. (acanthinura) geyri L. Müller, 1922. - In: Amphibians and Reptiles of North Africa. Koeltz, Koenigstein.

WILMS, T., RUF, D. & B. LÖHR (2003): Zur Haltung und Nachzucht zweier Taxa aus dem Uromastyx-acanthinura-Komplex: Uromastyx geyri MÜLER, 1922 und Uromastyx dispar flavifasciata MERTENS, 1962 (Reptilia: Agamidae: Leiolepidinae: Uromastyx). – Draco, Münster, 4 (2): 42-55.

Inhalt:
Die Arten des Uromastyx-acanthinura-Komplexes, Verwandtschaftliche Verhältnisse, Aussehen, Nordafrikanische Dornschwanzagame (Uromastyx acanthinura), Südsaharische Dornschwanzagame (Uromastyx dispar), Geyrs Dornschwanzagame (Uromastyx geyri), Schmidts Dornschwanzagame (Uromastyx alfredschmidti), Gefährdung und Importsitiuation, Haltung und Vermehrung von Uromastyx geyri, Terrarieneinrichtung und Klima, Nahrung, Inkubation und Schlupf, Haltung und Vermehrung von Uromastyx dispar flavifasciata, Nahrung, Fortpflanzung, Inkubation und Schlupf, Diskussion.




Uromastyx macfadyeni PARKER, 1932

Macfadyen’s Mastigure / Macfadyens Dornschwanzagame



Uromastyx nigriventris ROTHSCHILD & HARTERT 1912

Moroccan Spiny-tailed Lizard

PAUWELS, O.S.G., BONNIN, J.L., SANCHO, V. & T. WILMS (2017): Herpetoculture notes: Uromastyx nigriventris (Moroccan Spiny-tailed Lizard). Longevity. – Herpetol. Rev., 48 (3): 569.

ROTHSCHILD, W. & E. HARTERT (1912): Description of Uromastyx nigriventris in “Ornithological explorations in Algeria”. -Novit. Zool., London 18: 456-550.



Uromastyx occidentalis MATEO, GENIEZ, LOPEZ-JURADO & BONS, 1999

MATEO, J., GENIEZ, P., LÓPEZ-JURADO, L. & J. BONS (1998): Chorological analysis and morphological variations of Saurians of the genus Uromastyx (Reptilia, Agamidae) in western Sahara. Description of two new taxa. – Rev. Esp. Herp., 12: 97-109.

The description of a new species of the genus Uromastyx is proposed on the basis oftwo specimens from the Adrar Souttouf in Western Sahara. This taxon differs greatly from U. acanthinura on account its larger size, the much larger number of scales, the arrangement of tubercules on its upper thighs, the different habitus and colouring. These morphological features mean it closely resembles U. aegyptia. The existence of a relictual U. aegyptia-group throughout the Sahara is suggested. In addition, the morphological variations in Spiny-tailed agamas (or Mastigures) ofthe Uromastyx acanthinura group in the west ofthe Sahara are briefly analysed. This produces evidence for the existence of a species proper to Western Sahara and surrounding areas, Uromastyx jlavifasciata, represented by two subspecies: U. f jlavifasciata in the north and U. f obscura subsp. nov. in the south. The latter new form is characterised by uniformly black colouring, even in active individuals. This work also demonstrates that Uromastyx acanthinura werneri does not penetrate Western Sahara and that ist distribution is parapatric with that of U. jlavifasciata. Lastly, the presence of U. maliensis is suspected in the Adrar Atar (Mauritania) and the Adrar Souttouf (Western Sahara).


Uromastyx ocellata LICHTENSTEIN, 1823

EVERS, M. (2001): Haltung und Vermehrung der Geschmückten Dornschwanzagame Uromastyx ocellata ocellata. – Reptilia, Münster, 6 (3): 56-61.

FRAHM, S. (2006): Die Geschmückte Dornschwanzagame Uromastyx ocellata. – Natur und Tier Verlag, Münster. 64 S.

MOHAMMED, E.H.A. & D.W. HAMMAD (2008): Notes on a sympatric population of two species of spiny-tailed lizards in Sudan: Uromastyx dispar Heyden, 1827, and U. ocellata Lichtenstein, 1823 (Sauria: Agamidae). - Zoology in the Middle East 44: 51-56.

A series of 27 Uromastyx was collected at Abu Hammad, Nile State, northern Sudan, consisting of two distinct, sympatric species: three U. dispar Heyden, 1827 and 24 U. ocellata Lichtenstein, 1823. The morphological analysis of these specimens reveals some data exceeding the previously known range of variability in these two species, including the maximum length.

SCHÄFER, F. (2009): Uromastyx ocellata, die geschmückte Dornschwanzagame. - Terralog 89: 17-18.

SPAWLS, S. (2021): Uromastyx ocellata. The IUCN Red List of Threatened Species 2021: e.T176223A21708775

WILMS, T. & W. BÖHME (2000): Zur Taxonomie und Verbreitung der Arten der Uromastyx-ocellata-Gruppe (Sauria: Agamidae). – Zoology in the Middle East, Heidelberg, 21: 55-76.

Zusammenfassung:
Es wird die Validität der Taxa der ocellata-Artengruppe (benti, macfadyeni, ocellata, ornata, philbyi) untersucht, und Informationen zu deren Verbreitung werden gegeben. Wir unterscheiden in der ocellata-Gruppe insgesamt fünf Taxa, die vier Arten zugehörig sind: Uromastyx benti, U. macfadyeni, U. ocellata und U. ornata. Daneben wird ein Lectotypus für U. benti designiert und der Locus typicus von Uromastyx ocellata auf Suakin (Nordwest-Sudan) eingeschränkt. Eine Beschreibung des Holotypus von macfadyeni wird gegeben und das Exemplar wird abgebildet. Ein Schlüssel für die Arten der ocellata-Artengruppe schließt sich an.




Uromastyx ornata HEYDEN, 1827

ABDEL-NABI, I.M. & M.H. EL-NAGGAR (1992): Hibernation in reptiles 2. Lipid metabolism in brain, liver and kidney of Agama stellio and Uromastyx ornatus. –Proceedings of the Zoological Society A.R. Egypt, 23 (2): 109-117.

ABDEL-NABI, I.M., EL-NAGGAR, M.H. & ABDEL-RAHEEM, K.A. (1992): Hibernation in reptiles 1. Influence of seasonal variations on lipid fractions in the serum of Agama stellio and Uromastyx ornatus. – Proceedings of the Zoological Society A.R. Egypt, 23 (2): 101-108.

ABDEL-NABI, I.M., EL-NAGGAR, M.H. & ABDEL-RAHEEM, K.A. (1992): Hibernation in reptiles 3. Changes in metabolism of lipid fractions in skeletal and cardiac muscles of Agama stellio and Uromastyx ornatus. – Proceedings of the Zoological Society A.R. Egypt, 23 (2): 118-125.

ALI-SHTAYEH, M.S. & A.K. HAMAD (1997): Biodiversity in Palestine: West Bank and Gaza Strip. In: Proceedings of the Arab experts meeting on biodiversity in the Arab world. (ed. ACSAD: The Arab Center for the Studies of Arid Zones and Dry Lands (Damascus) and the Technical Secretary of the League of the Arab States (Cairo). 1-5 October 1995, Cairo, Egypt. ACSAD/AS/P171/1997. Damascus. p. 469-529.

EVERS, M. (2005): Haltung und Vermehrung der Bunten Dornwschwanzagame. – Die Aquar. Terrar. Z., Stuttgart, 58 (1): 24-28.

EVERS, M. (2007): Die Bunte Dornschwanzagame Uromastyx ornata. – Natur und Tier Verlag, Münster. 64 S.

KLICHE, B. (2004): Angaben zur Haltung, Zucht und Aufzucht von Uromastyx ocellata LICHTENSTEIN, 1823. – Sauria, Berlin, 26 (3): 23-28.

Abstract:
Experiences with the captive care and propagation of the ocellated spiny-tailed lizard, Uromastyx ocellata, are described and details on husbandry requirements, successful incubation, and raising of the juveniles are given.

MOLCO, D. (2007): Beobachtungen zur Lebensweise von Uromastyx ornata in den Eilat-Bergen, Israel. – Draco, Münster, 8 (3): 54-60.

MÜLLER, H.D. (1997): Habitat-Beschreibung der Dornschwanzagame Uromastyx ocellata ornata HEYDEN, 1827 an der Ostseite des südlichen Sinai, Ägypten. – elaphe (N.F.), 5 (2): 81-84.

PETRI, C. (2006): Haltung und Zucht der bunten Dornschwanzagame Uromastyx ornata (HEYDEN 1827) im Terrarium. – Iguana-Rundschreiben, 19 (2): 26-32.

VANDERLINDEN, A. (1999): Notes on the captive breeding of ornate spiny-tailed lizards. – Bull. Chic. Herpetol. Soc., 34 (6): 154-155.

WILMS, T., MÜLLER, H.D. & B. LÖHR (2002): Bunte Juwelen im Terrarium – Erfahrungen bei der langjährigen Pflege und Vermehrung von Uromastyx ornata (HEYDEN, 1827) bis zur F²-Generation. – Draco, Münster, 3 (2): 41-49. (02.930)

WILMS, T. & R. SINDACO (2012): Uromastyx ornata. The IUCN Red List of Threatened Species 2012: e.T198538A2531743.


Uromastyx ornata ornata HEYDEN, 1827

HEYDEN, C.H.G. von (1827): Description of Uromastyx ornata ornata. - In: “Reptilien”. - Rüppell, E.: Atlas zu Reise im nördlichen Afrika. l. Zoologie. H. L. Brönner, Frankfurt a. M., pp. 1-24.


Uromastyx ornata philbyi PARKER, 1938

AFIFI, M. & A. ALKALADI (2014): Antioxidant system in Uromastyx philbyi during hibernation and activity periods. – Cent. Eur. J. Biol., 9: 864–868.

Hibernation is an extreme physiological state characterized by profound decreases in oxidative metabolism and body temperature during bouts of prolonged torpor, interrupted by brief periods of arousal with sudden increases in oxidative metabolism, with alterations in antioxidant defenses. We monitored the activities of antioxidant enzymes and oxidative stress during hibernation and activity in Uromastyx philbyi. 20 animals were used, 10 of which were collected in the hibernation season (group I) and the other 10 collected during the active period (group II). Blood, liver, brown adipose tissue (BAT) and brain samples were used to determine free radical and antioxidant levels. The results indicated a significant decrease of free radicals and increase of vitamin C, especially in serum during hibernation. In contrast, during the active period free radicals, enzymatic antioxidants as glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) and non-enzymatic antioxidants as reduce glutathione (GSH) and vitamin E increased in all studied tissues. It can be concluded that Uromastyx philbyi has a strong antioxidant defense system that protects it from the injurious effects of free radicals either at the periods of arousal or during activity periods.

AMER, S.A.M. (2010): Biochemical genetics of Uromastyx ornata philbyi inhabiting South Western Saudi Arabia. – Egyptian Journal of Experimental Biology, Zoology, 6 (2): 331-336.

AMER, S.A.M., AHMED, M.M., WILMS, T.M., SHOBRAK, M. & Y. KUMAZAWA (2012): Mitochondrial DNA variability within Uromastyx ornata philbyi (Agamidae: Squamata) from Southwestern Saudi Arabia. – Comparative AND Functonal Genomics, 2012, Art. ID 851379. 8 S.

Approximately 2.4kbp of mitochondrial DNA was sequenced from 9 individuals of Uromastyx ornata philbyi originating from Taif, Namas, Al-Baha, and Jazan in southwestern Saudi Arabia. The sequenced regions cover eight tRNA genes (tRNAGln, tRNAIle, tRNAMet, tRNATrp, tRNAAla, tRNAAsn, tRNACys, and tRNYTyr) and two protein-coding genes (NADH dehydrogenase subunit 2 and cytochrome b). U. ornata philbyi had an insertion of 170bp length between tRNAGln and tRNAIle genes. The first 128bp of this insertion was similar to the one identified earlier in U. ornata ornata and can be folded into a stem-and-loop structure, which was less stable in U. ornata philbyi than in U. ornata ornata, or the second tRNAGln gene. The next 42bp of the insertion was unique in U. ornata philbyi and additionally retained a stable stem-and-loop structure. Most base substitutions found in the sequenced genes were synonymous transitions rather than transversions. Tree analyses supported the sister group relationship between the two U. ornata subspecies and divided U. ornata philbyi into two groups: Taif+Namas group in the east of Sarawat and Al-Baha+Jazan group in the west of Sarawat. These molecular data are in agreement with current classification of U. ornata.

DEHLAWI, G.Y. & M.F. ISMAIL (1990): Studies on the ultrastructure of the spermiogenesis of Saudian reptiles. 1. – The sperm head differentiation in Uromastyx philbyi. – Proceedings of the Zoological Society A.R. Egypt., 21: 79-89.

DEHLAWI, G.Y. & A.M. SALEH (1990): Studies on the ultrastructure of the spermiogenesis of Saudian reptiles. 2. – The sperm tail differentiation in Uromastyx philbyi. – Proceedings of the Zoological Society A.R. Egypt., 21: 91-101.

FARAG, A.A. (1982): Histological studies on the mucosal epithelium of the alimentary tract of the agamid lizard, Uromastyx philbyi PARKER. – Annals of Zoology (Agra), 19 (1): 1-23.

FARAG, A.A. (1984): Comparative histology of the male gonads in the lizards, Uromastyx philbyi and Mabuya brevicollis. – Annals of Zoology (Agra), 21 (2): 59-69.

PARKER, H.W. (1938): Reptiles and amphibians of the southern Hejaz. - Ann. Mag. nat. Hist. (11) 1: 481-492.

WILMS, T. (2007): Philbys Dornschwanzagame (Uromastyx ornata philbyi) – über eine fast unbekannte Schönheit. – Draco, 8 (3): 61-66.

ZARI, T.A. (1992): The resting metabolic rate-temperature curve of the desert dhabb Uromastyx philbyi. – Journal of the Egyptian German Society of Zoology, 7A: 453-461.

ZARI, T.A. (1996): Effects of body mass and temperature on standard metabolic rate of the herbivorous desert lizard Uromastyx philbyi. – Journal of Arid Environments, 33 (4): 457-461.

ZARI, T.A. (1998): Effects of sexual condition on food consumption and temperature selection in the herbivorous desert lizard, Uromastyx philbyi. – Journal of Asrid Environments, London, 38: 371-377.

ZARI, T.A. (1999): On the reproductive biology of ther herbivorous spiny-tailed agamid Uromastyx philbyi in western Saudi Arabia. – Zoology in The Middle East, Heidelberg, 19: 123-130.

Kurzfassung:
Die Fortpflanzungsbiologie der Dornschwanzagame Uromastyx philbyi, eine herbivore Wüstenagame, wurde im westlichen Saudi-Arabien untersucht. Die Fortpflanzung zeigt einen jahreszeitlichen Zyklus, wobei die Paarung im zeitigen Frühjahr (März) und die Eiablage im späten Frühjahr (Mai-Juni) stattfindet; die Jungen schlüpfen im Sommer (Juli). Die mittlere Gelegegröße betrug 6,67 Eier. Die Eier sind groß (mittlere Masse: 7,48 g) and die relative Gelegemasse (RCM) betrug im Mittel 0,49. Die Gelegemasse und RCM ist umso größer, je größer die Eimasse ist. Gelegegröße, Eigröße, Gelegemasse und RCM ist signifikant korreliert mit der Körpergröße des Muttertieres.




Uromastyx princeps O´SHAUGHNESSY, 1880

Princely Spiny-tailed Lizard, Somalian Mastigure / Somalische Dornschwanzagame 

CHERCHIE, M.A. (1954): Una nuova sottospecie de Uromastix princeps O´Schaug. – Atti Soc. ital. Sci. nat., 93 (3-4): 538-544.

CHERCHIE, M.A. (1958): Note su Uromastix princeps scortecci Cherchi (Sauria). – Atti Soc. ital. Sci. nat., 97: 107-111.

O'SHAUGHNESSY, A.W.E. (1880): Description of a new Species of Uromastix. - Proc. Zool. Soc. London 1880: 445-446.

STREJCEK, M. (1995): Zkusenost s chovem traorepa Uromastyx princeps. – Akvarium Terarium, 38 (8): 38-41.

WILMS, T. & F. HULBERT (1995): Uromastyx princeps. – Sauria, Berlin, 17 (3): 1-2.




Uromastyx shobraki WILMS & SCHMITZ, 2007

WILMS, T. (2012): Uromastyx shobraki. The IUCN Red List of Threatened Species 2012: e.T199815A2612567.

WILMS, T.M. & A SCHMITZ (2007): A new polytypic species of the genus Uromastyx MERREM, 1820 (Reptilia: Squamata: Agamidae: Leiolepidinae) from southwestern Arabia. – Zootaxa, 1394: 1-23.

We describe Uromastyx yemenensis sp. nov. from south-western Arabia, comprising two geographic subspecies, U. y. yemenensis and U. y. shobraki ssp. nov. The new species is a member of the Uromastyx ocellata species group, closely related to U. benti. It is differentiated from its sister taxon by smaller scales around midbody and smaller ventrals. The new species is restricted to the extreme south-western tip of the Arabian Peninsula. The western populations of U. yemenensis differ.


Uromastyx thomasi PARKER, 1930

Oman-Dornschwanzagame / Thomas´ Mastigure

HULBERT, F. & T. WILMS (1999): Arabia Felix – auf der Suche nach Uromastyx thomasi im Sultanat von Oman. – Reptilia, Münster, 4 (2): 30-33.

PARKER, H.W. (1930): Three new reptiles from southern Arabia. - Ann. Mag. nat. Hist. (10) 6: 594-598.

WILMS, T. (2003): F2-Nachzucht der Oman-Dornschwanzagame (Uromastyx thomasi) geglückt. – Draco, Münster, 4 (2): 94-95.

WILMS, T. & K.J.M. AL RASBI (2013): Uromastyx thomasi. The IUCN Red List of Threatened Species 2013: e.T199600A2605933.

WILMS, T., LÖHR, B. & F. HULBERT (2002): Erstmalige Nachzucht der Oman-Dornschwanzagame – Uromastyx thomasi PARKER, 1930 – (Sauria: Agamidae: Leiolepidinae) mit Hinweisen zur intraspezifischen Variabilität und zur Lebensweise. – Salamandra, Rheinbach, 38 (1): 45-62. (02.828)

Während einer herpetologischen Expedition in das Sultanat von Oman im November und Dezember 1998 konnten Daten zur Ökologie von Uromastyx thomasi erhoben und einige Tiere im Rahmen eines wissenschaftlich begleiteten Zuchtprojektes gefangen werden. In der vorliegenden Arbeit werden die Haltungsbedingungen beschrieben, die zur erstmaligen Nachzucht dieser Art in Menschenobhut führten. Neben den Reproduktionsdaten werden die Kenntnisse zur Ökologie sowie zur Chorologie, intraspezifischen Variabilität und Taxonomie von Uromastyx thomasi zusammengefasst.




Uromastyx yemenensis WILMS & SCHMITZ, 2007

Yemen-Dornschwanzagame / Südarabische Dornschwanzagame / South Arabian Mastigure

WERNING, H. (2007): Eine neue Dornschwanzagame aus dem Jemen. – Terraria, Münster, 2 (4): 32.

WILMS, T. (2012): Uromastyx yemenensis. The IUCN Red List of Threatened Species 2012: e.T199602A2606045.

WILMS, T.M. & A SCHMITZ (2007): A new polytypic species of the genus Uromastyx MERREM, 1820 (Reptilia: Squamata: Agamidae: Leiolepidinae) from southwestern Arabia. – Zootaxa, 1394: 1-21.

zurück / back