Literatur und Schriften


Pogona (STORR, 1882)

Bartagamen

BARTLETT, R.D. & P. BARTLETT (1999): Bearded Dragons. – Barron´s Educational Series, Inc., New York, USA. 45 S.

DONELEY, B. (2006): Caring for the bearded dragon. - In: Proceedings of the North American Veterinary Conference. Volume 20. January 7-11, 2006. Orlando, Florida. Small animals and exotics edition. Book 2. North American Veterinary Conference, Gainesville: 1607-1611.

EGRETZBERGER, G. (1997): Bemerkungen zur Haltung und Zucht dreier Bartagamen-Arten der Gattung Pogona STORR, 1982. – Jahrbuch für den Terrarianer, Österreichische Interessengemeinschaft, Fachgruppe Terraristik, Krenglbach, 4: 10-20.

GLAUERT, L. (1959): Herpetological miscellanea. XI. Dragon lizards of the genus Amphibolurus. – W. Austr. Nat., 7: 42-51.

GREEN, D. & T. LARSON (2001): Keeping Bearded Dragons revised. – Aust. Reptile Keeper Publications, Bendigo. 37 S.

GRENARD, S. (1999): The Bearded Dragon. – Howell Book House, New York. 126 S.

GRENARD, S. (2007): Bearded Dragon: Your Happy Healthy Pet. - Ingram Pub Services. 128 pp.

HAUSCHILD, A. (2000): Die Bärtigen Drachen. – Reptilia, Münster, 5 (5): 22-27.

HAUSCHILD, A. (2000): Ein Evergreen: Bartagamen im Terrarium. – Reptilia, Münster, 5 (5): 28-32.

HAUSCHILD, A. & H. BOSCH (1997): Bartagamen und Kragenechsen. – Natur und Tier-Verlag. Münster. 95 S.

HOSER, R.T. (1997): Pogona – from an Australian perspective. – Reptilian, 5 (2): 27-41.

JULIAN, S. & P. GÉRARD (1998): L´élevage des Agames Barbus et des Uromastyx. – Phillipe Gérard Editions, Paris, FRAU. 67 S.

KLINGENBERG, R. (2000): Common diseases of Bearded Dragons: Adenoviruses. – The Vivarium, 9 (6): 31.

KÖHLER, G., GRIEßHAMMER, K. & N. SCHUSTER (2003): Bartagamen. Biologie, Pflege, Zucht, Erkrankungen. – Offenbach (Herpeton-Verlag). 179 S.

KUNZ, K. (2005): “Haustier” Bartagame – schaden Strfeicheleinheiten? – Draco, Münster, 6 (2): 94-96.

LOVE, B. (2000): Bartagamenfieber. – Reptilia, Münster, 5 (5): 39-42.

MAZORLIG, T. (1999): Bearded Dragons. – Advanced Vivarium Systems, Lakeside, Ca., USA. 64 S.

MÜLLER, H.D. (1995): Eine australische Bartagame. – Die Aquar. Terrar. Z., Stuttgart, 48 (12): 779-781.

MÜLLER, P.M. & R. KOHLMEYER (2005): Bartagamen-FAQ (Frequently Asked Questions). – Draco, Münster, 6 (2): 28-37.

Inhalt:
Alter / Abkürzungen / Arten / Austellung des Terrariums / Aufzucht / Auswahl der Tiere / Baden / Bartagamen im Internet / Bastarde / Beleuchtung / Bodengrund / Bodenheizung / Bücher / Eiablage / Einrichtung / Ernährung / Farbvarianten / Fütterungsintervall / Futterverweigerung / Geschlechtsbestimmung / Größe / Haltung mehrerer Tiere / Heimchenfallen / Inkubation / Inzucht / Kinder und Bartagamen / Kontakt Mensch-Tier / Kosten / Kotuntersuchungen / Luftfeuchtigkeit, relative / Quarantäne / Regenerieren von Körperteilen / Samenspeicherung / Schlafverhalten / Sprühen / Temperaturen / Terrariengröße / Thermoregulation / Trinken / Urlaub / UV-B-Bestrahlung / Verhalten / Winterruhe / Zähmen / Zeitschriften / Zucht.

LOVERIDGE, A. (1932): New lizards of the genera Nephrurus and Amphibolurus from Western Australia. –Proc. New England Zoo. Club, 13: 31-34.

MÜLLER, P.M. (2002): Die Bartagame: Pflege und Zucht. – Kirschner & Seufer Verlag, Keltern-Weiler. 78 S.

MÜLLER, P.M. (2005): Bartagamen – die Gattung Pogona (STORR, 1982). – Draco, Münster, 6 (2): 4-19.

OLIVER, B. (1998): Predation on a Pogona sp. by Pseudonaja textiles. – Hertpetofauna, Sydney, 28(1): 54-55.

PALIKA, L. (2000): Your bearded dragon´s life: your complete guide to caring for your pet at every stage of life. Prima Publishing, Rosville, USA. 294 S.

PALIKA, L. (2003): Leben mit Bartagamen. – Natur und Tier-Verlag, Münster. 206 S.

PETHER, J. (1996): Bartagamen. – Reptilia, Münster, 1 (1): 14-16.

REINERS, K., ENGELKE, E., PFARRER, C., FEHR, M. & K. MATHES (2021): Untersuchungen zur Anatomie und Histologie des Atmungstrakts der Bartagame (Pogona spp.) sowie seiner Darstellung in bildgebender Diagnostik. – elaphe 1/2021: 74-78.

ROGNER, M. (2014): Nach wie vor ideale Terrarientiere auch für Anfänger: Bartagamen. – Reptilia, 19 (6): 18-25.

SMITH, J. (1974): Hatchling bearded dragons eggs. – South Aust. Herp., 2 (1): 10.

SPRACKLAND, R.G. (2003): On Bearded Dragons´ turf. – Reptiles, 11 (2): 44-46.

SCHMIDA, G. (2005): Betrachtungen zu ostaustralischen Bartagamen. – Draco, Münster, 6 (2): 47-54.

Inhalt:
Pogona barbata, Pogona vitticeps, Pogona henrylawsoni.

SCHREIBER, A. & E. SCHMIDT (2022): Die Bartagame ist das erste „Heimtier des Jahres“ des ZZF. – Reptilia, Münster, 27 (6): 6-8.

STEIJN, N.P. van (1989): Pflege und Nachzucht australischer Bartagamen. – Die Aquar. Terrar. Z., Stuttgart, 42 (11): 668-671.

STORR, G.M. (1982): Revision of the Bearded Dragons (Lacertilia: Agamidae) of Western Australia with notes on the Dismemberment of the genus Amphibolurus. – Rec. West. Aust. Mus., 10 (2): 199-214.

SZCZEPANIAK, K. & L. ADASZEK (2012): Infections with adenoviruses in bearded dragons. – Zycie Weterynaryjne, 87 (3): 224-226.

The purpose of this paper was to present a novel veterinary problem of viral infections in reptiles. Adenoviral infections occur in many captive reptiles also in bearded dragons often kept as companion animals. So far the most problematic is Agamid adenovirus 1 (AgAdV1), that has been reported in three species of these lizards: Pogona barbata, Pogona vitticeps and Pogona henrylawsoni. Premonitory signs of AgAdV1 infection are often non-specific, including loss of appetite, weight loss and weakness. Fatal gastroenteritis and hepatitis can occur in neonatal and young lizards. Usually, affected animals have secondary infections and also parasitic invasions. Histopathology can identify the intranuclear inclusion bodies associated with adenoviral infection which can be found mainly in hepatocytes and epithelial cells of intestinal mucosa. Their presence frequently accompanies severe pathological lesions and multiple hemorrhages in the liver. The diagnostic approach is difficult however, when performed ante-mortem. There are no effective treatments in these infections. Currently available PCR test improves the diagnostic procedure and allows detecting adenoviruses in cloacal washings or in feces of lizards. This is of critical importance in lizards colonies.

VOSJOLI, P. de & R. MAILLOUX (1993): The General Care and Maintenance of Bearded Dragons. – Advanced Vivarium Systems, Lakeside, USA. 63 S.

VOSJOLI, P. de & R. MAILLOUX (1996): Species and morphs of Bearded Dragons Pogona in U.S. herpetoculture. – The Vivarium, 7 (6): 28-35.

VOSJOLI, P. de, MAILLOUX, R., DONOGHUE, S., KLINGENBERG, R. & J. COLE (2001): The Bearded Dragon manual. – The Herpetocultural Library, Advanced Vivarium Systems, Irvine. 174 S.


WEIS, P. & P. WEIS (1998): Advances in the breeding and husbandry of Bearded Dragons. – Reptiles, April 1998: 10-19.

WIECHERT, J. (2005): Bartagamen in der tierärztlichen Praxis. – Draco, Münster, 6 (2): 74-82.

Inhalt:
Einleitung / Endoparadsoiten (Innenparasitren) / Kokzidien / Oxyuren / Flagellaten und Ciliaten / Ektoparasiten (Außenparasiten) / Ernährungsbedingte Erkrankungen (Verfettung, Nierenerkrankung) / Stoffwechselbedingte (Metabolic one Disease – MBD) / Obstipation (Verstopfung) / Legenot / Bakterielle Infektionen / Magen-Darm-Trakt / Lungeninfektionen / Abszesse / Viruserkrankungen / Adenoviren /

WITTEN, G.J. (1994): Taxonomy of Pogona (Reptilia: Lacertilia: Agamidae). – Mem. Queensl. Mus., Brisbane, 37 (1): 329-343.

WITTEN, G.J. (1994): Relative growth in Pogona (Reptilia: Lacertilia: Agamidae). – Mem. Queensl. Mus., Brisbane, 37 (1): 345-356.

ZIMMERMANN, E. (1980): Durch Nachzucht erhalten: Bartagamen. – Aquar. Mag., 14: 86-94.

ZOFFER, D. & T. MAZORLIG (1998): Bearded & Frilled Dragons. – T.F.H. Publications, USA. 64 S.



Pogona barbata CUVIER, 1829

Bartagame / Eastern Bearded Dragon / Bearded Dragon / Jew Lizard

ALDERTON, D. (1986): Spotlight. The bearded dragon. – Aquar. Pondkpr., 51 (5): 18-19.

ALMANDARZ, E. (1959): Hatching and care of the bearded dreagon Amphibolurus barbatus at Lincoln Park Zoo, Chicago. – Int., Zoo Yb., 9: 50-51.

AMEY, A.P. & J.M. WHITTIER (2000): Seasonal patterns of plasma steroid hormones in males and females of the Bearded Dragon Lizard, Pogona barbata. – Gen. C. Endocr., 117 (3): 335-342.

AMEY, A.P. & J.M. WHITTIER (2000): The annual reproductive cycle and sperm storage in the bearded dragon, Pogona barbata. – Aust. J. Zool., 48 (4): 411-420.

APEREN, W. van (1959): Notes on the breeding of Bearded dragons Amphibolurus barbatus at Melbourne Zoo. – International Zoo Yearbook, 9: 51-52.

BADHAM, J.A. (1976): The Amphibolurus barbatus species-group (Lacertilia: Agamidae). – Australian Journal of Zoology, 24: 423-443.

Abstract:
The subspecies A. barbatus barbatus as currently recognized comprises two distinct marginally sympatric morphs. Differences in external and skeletal morphology and the apparent absence of hybrids in the narrow zone of overlap imply that each morph is genetically distinct and not a particular phenotypic expression of one genotype. The low density of one morph in the region of overlap, and hybrid inferiority as suggested by laboratory cross-mating, may each bed partly responsible for the apparent lack of hybridization. On the basis each morphs is given full species status, one being the typical form A. barbatus (Cuvier) while the other is referred to A. vitticeps Ahl. With the morphological differences between these two species as the criteria for species status, the other described subspecies of A. barbatus are examined and likewise elevated to species rank as follows: A. minor Sternfeld, A. minimus Loveridge and A. microlepidotus Glauert. Two additional new species A. mitchelli, sp. nov., and A. nullarbor, sp. nov., are described within the species-group.

BARTHOLOMEW, G.A. & V.A. TUCKER (1963): Control of changes in body temperature, metabolism and circulation by the agamid lizard, Amphibolurus barbatus. – Physiol. Zool., 36: 199-218.

BRATTSTROM, B.H. (1971): Social and thermoregulatory behaviour of the bearded dragon, Amphibolurus barbatus. – Copeia, 1971: 484-497.

BUSTARD, H.R. (1966): Notes on the eggs, incubation and young of the bearded dragon, Amphibolurus barbatus barbatus (Cuvier). – Br. J. Herpet., 3: 252-259.

BUSTARD, R. (1958): Australian bearded dragon. – Wat. Life, 13: 391-392.

CAUGHLEY, J. (1971): Discussion on the Bearded Dragon – Amphibolurus barbatus. – Herpetofauna, Sydney, 3 (4): 191-21.

CREE, A., AMEY, A.P. & J.M. WHITTIER (2000): Lackof consistent hormonal responses to capture during the breeding season of the bearded dragon, Pogona barbata. – CBCPA, 126 (2): 275-285.

DALY, G. (1997): Behaviour of the Bearded dragon lizard Pogona barbata and P. vitticeps in captivity. – Herpetofauna, Sydney, 27 (2): 28-32.

FRANK, W. (1966): Multiple Hyperkeratose bei einer Bartagame, Amphibolurus barbatus (Reptilia, Agamidae), hervorgerufen durch eine Pilzinfektion, zugleich ein Beitrag zur Problematik von Mykosen bei Reptilien. – Salamandra, 2: 6-12.

GRIGG, G.C. &F. SEEBACHER (1999): Field test of paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona barbata). – Proc. R.Soc. London, 1425: 1291-1297.

HOSER, R.T. (1991): Observations of egg-laying by a Bearded Dragon (Pogona barbata) CUVIER. – AHS, 1991: 11.

JENNER, B. (1996): Pogona barbata on Kangaroo Island, S.A. – Herpetofauna, Sydney, 26 (1): 28-30.

JOHN, W. (1968): Zwei Australier: Amphibolurus barbatus und Egernia cunninghami. – Die Aquar. Terrar. Z., Stuttgart, 21: 185-186.

KAMMERER, P. (1902): Australische Echsen in der Gefangenschaft. 2. Amphibolurus barbatus Cuv. und muricatus White. – Bl. Aquar. Terrar.-Kunde, 13: 146-148.

KÄSTLE, W. (1973): Vollbart mit Hebelmechanik. Verhalten und Pflege der Bartagame. – Aquarien Magazin, Stuttgart, 8(2): 58-61.

LEE, A.K. & J.A. BADHAM (1963): Body temperature, activity and behavior of the agamid lizard, Amphibolurus barbatus. – Copeia, 1963: 387-394.

McCOY, F. (1886): Grammatophora barbata (KAUP). Bearded Lizard. – Prod. Zool. Vict., 13: 79-81.

METCALFE, D.C. AND T.J. HAWKESWOOD (2013): Pogona barbata (eastern bearded dragon) diet. - Herpetological Review 44 (2): 328.

MONTALI, R.J., SMITH, E.E., DAVENPORT, M. & M. BUSH (1975): Dermatophilosis in Australian bearded lizards. – Journal Am. vet. med. Ass., 167 (7): 553-555.

NEUGEBAUER, W. (1972): Geglückte Aufzucht von Bartagamen in der Stuttgarter Wilhelma. – Die Aquar. Terrar. Z., Stutgart, 25 (12): 424-426.

PARMENTER, C.J. & H. HEATWOLE (1975): Panting thresholds of lizards. 4. The effect of dehydration on the panting threshold of Amphibolurus barbatus and Amphibolurus muricatus. – Journal exp. Zool., 191 (3): 327-332.

PICKWORTH, B. (1981): Observations of behaviour patterns displayed by a pair of Bearded Dragons, Amphibolurus barbatus CUVIER. – Herpetofauna, Sydney, 12 (2): 13-15.

ROBERTS, D.T. & W.H. GEHRMANN (1990): Light quality and growth in the bearded lizard, Amphibolurus: a preliminary study. – Bull. Chic. Herp. Soc., 25 (6): 101-103.

ROTHENHÖFER, P. (2000): Die Bartagame. – Die Aquar. Terrar. Z., Stuttgart, 53 (10): 12-17.

RUSSELL, J. (1975): A nest of the Bearded Dragon, Amphibolurus b. barbatus. – Vict. Nat., 92: 12-13.

SCHÄUBLE, C.S: & G.C. GRIGG (1998): Thermal ecology of the Australian agamid Pogona barbata. -. Oecologia, 114 (4): 461-470.

SCHMIDA, G. (1968): Erlebnisse mit Bartagamen (Amphibolurus barbatus). – Die Aquar. Terrar. Z., Stuttgart, 21 (7): 27-30.

SCHMIDA, G. (2005): Betrachtungen zu ostaustralischen Bartagamen. – Draco, Münster, 6 (2): 47-54.

SEEBACHER, F. & C.E. FRANKLIN (2001): Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic mechanisms. – J. Exp. Biol., 204 (24): 4361-4366.

During thermoregulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a β-adrenergic antagonist. Cholinergic and β-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3 %) at the commencement of heating, and decreased to 30.7 % at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min–1) as the heat source was switched off, and this drop in heart rate coincided with either a drop in β[1]adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and β[1]adrenergic blockade. The results showed that cholinergic and β-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.

SHEA, G.M. (2000): An overlooked senior synonym of Pogona barbata (Cuvier, 1829) (Squamata: Agamidae). – Amphibia-Reptilia, 22 (1): 124-127.

STAUBER, A.G. & D.J. BOOTH (2003): Allometry in the Bearded Dragon Pogona barbata (Sauria: Agamidae): Sex and Geographic Differences. – Aust. Zool., 32 (2): 238-245.

Allometry in size and shape between sexes was investigated in preserved Bearded Dragon Pogona barbata museum specimens. Measurements for snout-vent, head, leg and tail lengths were obtained from 236 individuals ranging from hatchlings to large adults. Juveniles and adults were sexed, and size at onset of maturity was determined. Geographic variation in P. barbata was also studied by comparing lizards from three regions in New South Wales (NSW), which differ in annual rainfall. Relative to snout-vent length, head and leg lengths were in negative allometry in all specimens, and tail length was in positive allometry in juveniles, but negative in adults. Sexual dimorphism was evident in body size and shape. Males grew larger and reached maturity at larger sizes than females. While juvenile shape did not differ between the sexes, mature males had proportionately longer heads, legs and tails than adult females. This generalisation in sexual shape dimorphism did not hold true for animals from different NSW regions. Western males had proportionately longer legs and heads than western females, but relative tail lengths were not significantly different. Sexual dimorphism in body shape was not seen in the central animal group. In the east, heads and tails were longer in males than in females. Both sexes showed lower relative head and leg lengths in more arid regions. We suggest that a combination of genetic drift and phenotypic responses are likely causes of these variations.

STÖSSL, T.(1993): Pogona barbata. – Sauria, Suppl., Berlin, 15 (3): 257-260.

THROCKMORTON, G.S., BAVAY, J. de, CHAFFAY, W., MERROTSKY, B., NOSKE, S. & R. NOSKE (1985): The mechanism of frill erection in the bearded dragon Amphibolurus barbatus with comments on the jacky lizard A. muricatus (Agamidae). – J. Morph., 183: 285-292.

VOSJOLI, P. de & R. MAILLOUX (1987): The art of dragon keeping – husbandry and propagation of Amphibolurus barbatus and Amphibolurus rankini. – Proc. of the N. Cal. Herp. Soc. 1987 Conference on captive propagation and husbandry of reptiles and amphibians, Davis: 57-66.

WHITE, S.R. (1949): Some notes on the netted Dragon Lizard. – West. Aust. Nat., 1 (8): 157-161

WOTHERSPOON, D. & BURGIN, S. (2016): Sex and ontogenetic dietary shift in Pogona barbata, the Australian eastern bearded dragon. – Aust. J. Zool., 64 (1): 14-20.

Differences may occur in the carnivore–omnivore–herbivore spectrum over the lifespan of a reptilian species, but it seldom occurs between adult males and females. Information regarding the dietary habits of Australian eastern bearded dragon (Pogona barbata) is also limited. We dissected museum specimens and road kills of the Australian eastern bearded dragon to compare ontogenetic shift in diet. Juveniles were insectivorous. They typically consumed larger, more active, arthropod prey than mature individuals – they are active predators. Adults were omnivorous and typically consumed small arthropod prey, and tended to be sit-and-wait predators. Mature males, particularly larger males, were primarily herbivorous. Such divergence in adult reptilian diet has rarely been reported. We suggest that the dietary switches observed are consistent with the Optimum Foraging Model. Juveniles require a high protein diet to maximise growth from juvenile to maturity. Beyond maturity females continue to require higher levels of protein for reproduction than males. At least in part, this is because males rely on sham aggression to defend territory during the reproductive season rather than resorting to aggressive behaviour. This results in a lesser requirement for protein for adult males than is required for juveniles and adult females. Males have the advantage of not being as dependent on protein, and thus are able to rely more heavily on vegetation.

ZEITHAMMER, J. (1968): Ein „Barbarossa“ im Terrarium. Die Bartagame (Amphibolurus barbatus). – Aquarien Magazin, Stuttgart, 2: 102.

ZIMMERMANN, H. (1974): Letzte Rettung: der Kaiserschnitt. Zeitigung und Geburt der Bartagamen – Amphibolurus barbatus. – Aquar. Mag., Stuttgart, 8 (11): 451-454.

ZWINENBERG, A.J. (1970): Australische reptielen – I. De baardhagedis (Amphibolurus barbatus). – Lacerta, 28 (10/11): 77-79.

ZWINENBERG, A.J. (1971): The bearded dragon Amphibolurus barbatus. – Herp, 7 (3-4): 25-27.

ZWINENBERG, A.J. (1977): Die Bartagame (Amphibolurus barbatus). – Aquaria, 24 (9): 157-164.

ZWINENBERG, A.J. (1977): The bearded dragon. – Bulletin Chicago herpetol. Soc., 12 (4): 93-98.

ZWINENBERG, A.J. (1980): Die Bartagame Amphibolurus barbatus. - herpetofauna, 2 (8): 8-11. (1154)


Pogona henrylawsoni WELLS & WELLINGTON, 1985

Zwerg-Bartagame / Black-soil Bearded Dragon / Dumpy Dragon / Dwarf Bearded Dragon

DIECKMANN, M. (2007): FAQ Frequently Asked Questions – häufig gestellt Fragen. Pogona henrylawsoni. – Reptilia, Münster, 12 (6): 90-92.

DIECKMANN, M. (2007): Die Zwergbartagame – Pogona henrylawsoni. – Natur und Tier-Verlag, Münster. 64 S.

DIECKMANN, M. (2012): Pogona henrylawsoni (WELLS & WELLINGTON, 1985). – Iguana, 25 (1): 17-22.

FREYNIK, C. (2007): Die Zwergbartagame. – Vivaria Verlag, Meckenheim. 64 S.

KLARSFELD, J.D. & O. DIAZ-FIGUEROA (2005): Pogona henrylawsoni – Ecology, medical findings, captive maintenance, and breeding of the Lawson’s Dragon. – Reptilia (GB) (38): 30-37.

LANTERMANN, Y. & W. LANTERMANN (2007): Beobachtungen bei der Vermehrung von Bartagamen. – Die Aquarien- und Terrarienzeitschrift, 60 (2): 38-42.

RUF, D. (2005): Erfahrungen bei der Pflege und Vermehrung von Lawsons Zwergbartagame (Pogona henrylawsoni WELLS & WELLINGTON, 1985). – Draco, Münster, 6 (2): 55-62.

Inhalt:
Beschreibung / Verbreitung / Haltung / Nahrung / Fortpflanzung / Inkubation und Schlupf / Aufzucht und Verhalten von Jungtieren.

SHEA, G.M. (1995): The holotype and additional records of Pogona henrylawsoni Wells & Wellington, 1985. – Memoirs of the Queensland Museum, 38 (2): 574.

TURNER, G. & R.A: VALENTIC (1998): Notes on the occurrence and habits of Pogona brevis. – Herpetofauna, Sydney, 28 (1): 12-18.

VOSJOLI, P. de & R. MAILLOUX (1987): The art of dragon keeping – husbandry and propagation of Amphibolurus barbatus and Amphibolurus rankini. – Proc. of the N. Cal. Herp. Soc. 1987 Conference on captive propagation and husbandry of reptiles and amphibians, Davis: 57-66.




Pogona microlepidota GLAUERT, 1952

Kimberley Bearded Dragon

ELLIS, R.J. (2018): Clarification of the type series of Amphibolurus barbatus microlepidotus Glauert, 1952 (= Pogona microlepidota) (Reptilia: Squamata: Agamidae). – Zootaxa, 4457 (1): 197-200.

Ludwig Glauert (1952, p. 168) established the name Amphibolurus barbatus microlepidotus (= Pogona microlepidota) for a new agamid species (family Agamidae) from the type locality of “Drysdale River Mission, North Kimberley”, Western Australia and listed two specimens of the Western Australian Museum (WAM) collected by “Rev. Father [Raymundus] Salinas” in July 1922 as “types”. The two registrations forming the type series presented by Glauert were WAM R591 and WAM R592, which in accordance with Article 72.1.1. of the International Code for Zoological Nomenclature (the Code; International Commission on Zoological Nomenclature 1999) are considered syntypes. The two registrations presented by Glauert in the original publication (WAM R591–592) are in error, both registrations are associated with specimens of other species not matching the description or collection data presented by Glauert in the original description of A. b. microlepidotus. The specimen associated with WAM R591 is a Pseudonaja affinis Günther, 1872 (Serpentes: Elapidae), collected by M. Sweeting from the suburb of Leederville in Perth, Western Australia and WAM R592 a specimen of Neelaps calonotus (Duméril, Bibron, & Duméril, 1854) (Serpentes: Elapidae) collected by C. Thomas from the Perth suburb of West Guildford (now Bassendean), Western Australia (Fig. 1). The P. affinis specimen (WAM R591) is purportedly a whole specimen stored in a 75% ethanol solution; however, extensive searches failed to locate the specimen in the WAM collection and it is presumed lost or disposed of. In the early half of the 20th century, large and easily identifiable specimens were sometimes disposed following identification, registration and collection of morphological data due to their preservation and storage difficulty (see Smith 1981). The N. calonotus specimen (WAM R592) is now an alizarin-stained body in a glycol solution with skin stored separately in 75% ethanol (Fig. 1). The erroneous registration numbers provided by Glauert technically placed the name A. b. microlepidotus into synonymy with either N. calonotus or P. affinis depending on lectotype selection.

GLAUERT, L. (1952): Herpetological miscellanea. l. Notes of some forms of Diplodactylus. Some new western Australian lizards. - Western Australian Naturalist, 3: 166-168.




Pogona minor STERNFELD, 1919

Zwergbartagame / Western Bearded Dragon / Dwarf Bearded Dragon

BADHAM, J.A. (1976): The Amphibolurus barbatus species-group (Lacertilia: Agamidae). – Australian Journal of Zoology, 24: 423-443.

The subspecies A. barbatus barbatus as currently recognized comprises two distinct marginally sympatric morphs. Differences in external and skeletal morphology and the apparent absence of hybrids in the narrow zone of overlap imply that each morph is genetically distinct and not a particular phenotypic expression of one genotype. The low density of one morph in the region of overlap, and hybrid inferiority as suggested by laboratory cross-mating, may each bed partly responsible for the apparent lack of hybridization. On the basis each morphs is given full species status, one being the typical form A. barbatus (Cuvier) while the other is referred to A. vitticeps Ahl. With the morphological differences between these two species as the criteria for species status, the other described subspecies of A. barbatus are examined and likewise elevated to species rank as follows: A. minor Sternfeld, A. minimus Loveridge and A. microlepidotus Glauert. Two additional new species A. mitchelli, sp. nov., and A. nullarbor, sp. nov., are described within the species-group.

BROWNE-COOPER, R. (1984): Notes on the reproduction of the Bearded Dragon Pogona minor. – Herpetofauna, Sydney, 15 (1-2): 49.

CRAIG, M.D., GARKAKLIS, M.J., HARDY, G.E., GRIGG, A.H., GRANT, C.D., FLEMING P.A. & R.J, HOBBS (2007): Ecology of the western bearded dragon (Pogona minor) in unmined forest and forest restored after bauxite mining in south-west Western Australia. – Aust. J. Zool., 55 (2): 107–116.

Forest areas restored after mining typically take decades, or longer, before they resemble the original vegetation community. Understanding how fauna succession varies with plant succession requires detailed knowledge of an animal’s ecology. Knowledge of an animal’s ecology can also be used to predict faunal responses to management manipulations and enable techniques to be developed that accelerate the return of fauna to restored sites. We radio-tracked western bearded dragons (Pogona minor) in a mix of unmined forest sites and sites restored after bauxite mining, in the jarrah forest of south-west Western Australia, to determine critical resources and important microhabitats for dragons. Dragons were generalists – utilising a range of microhabitats – and adaptable, adjusting their microhabitat use depending on availability. Individuals also differed significantly in their microhabitat use and did not appear to have a defined home range. We concluded that the species would rapidly recolonise restored sites and that no modifications to current restoration practices were required to accelerate their return. Prescribed burning of restored areas could negatively affect this species but the effect would be short-term (<2 years). The approach used in this study could be used to develop management prescriptions that accelerate the return of late-successional species to restored sites

HARLOW, P.S. & D.J. PEARSON (2002): Reproduction and egg incubation in the Western Bearded Dragon, Pogona minor. – West. Aust. Nat., 23 (3): 181-185.

HÖRENBERG, T. (2006): Eine Rarität im Terrarium: Mitchells Bartagame. – Terraria, Münster, 1 (1): 36-43.

PIANKA, E.R. (2005): Zur Ökologie und Naturgeschichte der Zwergbartagame (Pogona minor) in der Great Victoria Desert (Australien). – Draco, Münster, 6 (2): 62-66.

SCHUSTER, N. (2005): Haltung und Vermehrung von Mitchells Bartagame, Pogona mitchelli (BADHAM, 1976). – Draco, Münster, 6 (2): 67-73.

Inhalt:
Verbreitung / Systematik / Beschreibung / Lebensweise und Verhalten / Haltung und verhalten im Terrarium / Fortpflanzung und Aufzucht / Krankheiten.

KUNZ, K. (2012): Mini-Bartagamen. – Reptilia, Münster, 17 (6): 10.

SMITH, B. & B. SMITH (1993): Notes on the nest of a bearded dragon Pogona minor. – West. Aust. Nat., 19 (3): 266.

STERNFELD, R. (1919): Neue Schlangen und Echsen aus Zentralaustralien. - Senckenb. Biol., 1 (3): 76-83.

THOMPSON, S.A. & G.G. THOMPSON (2003): The western bearded dragon, Pogona minor (Squamata: Agamidae): An early lizard coloniser of rehabilitated areas. – J. Royal Soc. West. Aust., 86: 1-6.

We investigated why the western bearded dragon (Pogona minor) is an early coloniser of rehabilitated waste dumps in the mining area around Ora Banda, Western Australia. The daily distance travelled for 19 (14 female and 5 male) P. minor, measured using nylon thread spools attached to the lizard’s tail, was 115 m. This corresponded to a mean linear distance moved of 68 m. Our data suggest that P. minor are one of the first species of reptiles to colonise mine site rehabilitation areas because they move appreciably greater daily distances than other agamid lizards, are spatially widely-foraging, frequently forage in or use saltbush (Atriplex spp) and bluebush (Maireana spp) as basking sites, regularly traverse open areas, readily move up and down steep slopes, and eat bull ants which are generally present on rehabilitated sites. Pogona minor also have a high reproductive potential and show no obvious aversion to mine sites as oviposition locations. Pogona minor eggs incubated at 27 °C took an average of 64 days to hatch, the mean snout-to-vent length was 36.1 mm and the mean mass was 1.74 g.

WERNING, H. (2014): Ein neuer Drachen erobert die Welt: Pogona minor im Terrarium. – Reptilia, Münster, 19 (6): 38-42.

Pogona minor minor STERNFELD, 1919


Pogona minor minima (LOVERIDGE, 1933)

HIELSCHER, M. (1989): Haltung und Nachzucht der Australischen Zwergbartagame, Pogona minima. – elaphe, Rheinbach, 11 (2): 21-24.

LOVERIDGE, A. (1933): New agamid lizards of the genera Amphibolurus and Physignathus from Australia. – Proc. New Engl. Zool. Club, 13: 69-72.


Pogona minor mitchelli (BADHAM 1976)




Pogona nullarbor BADHAM, 1976

Nullabor Bearded Dragon

BADHAM, J.A. (1976): The Amphibolurus barbatus species-group (Lacertilia: Agamidae). – Australian Journal of Zoology, 24: 423-443.

The subspecies A. barbatus barbatus as currently recognized comprises two distinct marginally sympatric morphs. Differences in external and skeletal morphology and the apparent absence of hybrids in the narrow zone of overlap imply that each morph is genetically distinct and not a particular phenotypic expression of one genotype. The low density of one morph in the region of overlap, and hybrid inferiority as suggested by laboratory cross-mating, may each bed partly responsible for the apparent lack of hybridization. On the basis each morphs is given full species status, one being the typical form A. barbatus (Cuvier) while the other is referred to A. vitticeps Ahl. With the morphological differences between these two species as the criteria for species status, the other described subspecies of A. barbatus are examined and likewise elevated to species rank as follows: A. minor Sternfeld, A. minimus Loveridge and A. microlepidotus Glauert. Two additional new species A. mitchelli, sp. nov., and A. nullarbor, sp. nov., are described within the species-group.

SMITH, J. & T.D. SCHWANER (1981): Notes on reproduction by captive Amphibolurus nullabor (Sauria: Agamidae). – Trans. Royal Soc. South Aust., 105: 215-216.




Pogona vitticeps AHL, 1926

Bartagame / Central Bearded Dragon

AREST, C.M. & J.L. FARRIOLS (1998): Pogona vitticeps Inland Bearded Dragon (Ahl, 1926). – Reptilia (GB), 2: 39-42.

BERGHOF, H.-P. (1997): Ist die Vergesellschaftung des Kaspischen Wüstenwarans (Varanus griseus caspius) mit Agamen (Pogona vitticeps) möglich? – Monitor Sprockhövel, 5 (2): 48-50. (03.181)

Abstract:
The author documents the keeping of Varanus griseus caspius and Pogona vitticeps within the same vivaria. Conditions and circumstances are briefly described.

BERGHOF, H.-P. (1999): Nachtrag zum Artikel „Ist die Vergesellschaftung des Kaspischen Wüstenwarans (Varanus griseus caspius) mit Agamen (Pogona vitticeps) möglich?“ – Monitor Sprockhövel, 8 (1): 16-18. (03.182)

Abstract:
Three adult males of Varanus griseus caspius were housed together with one adult Pogona barbata for seven years, without any aggressiv interactions of the monitors. When the P. barbata became skinny and sickly one of the V. g. caspius attacked suddenly the agamid. The P. barbata was separated from the monitors and died four weeks later. After that a Pogona vitticeps was placed right infront of the terrarium of the V. g. caspius and the monitors immediately tried to attack this agamid. So it became obvious that the V. g. caspius were tolerant of the P. barbata because all the animals lived together since they were semi-adult.

BORG, J.P. TER (2007): Paniek bij de Baardagamen (Pogona vitticeps). – Lacerta 65 (5): 218.

COENEN, N. (2013): Een uitbraak van het Chrysosporium anamorph van Nannizziopsis vriesii in een collectie baardagamen (Pogona vitticeps). Masterproef. Universiteit Gent.

COOPER, W.E. (2000): Chemosensory discrimination of plant and animal foods by the omnivorous Iguanian lizard Pogona vitticeps. – Can. J. Zool., 78: 1-5.

CRAFTER, S., SOLDINI, M.I., DANIELS, C.B. & A.W. SMITS (1995): The effect of temperature and hypoxia-hypercapnia on the respiratory pattern of the unrestrained lizard, Pogona vitticeps. – Australian Journal of Zoology, 43 (2): 165-172.

DAHL, H. (1894): Bart-Agame und Kiel-Eidechse. – Blätter für Aquarien- und Terrarien-Freunde, 5: 296-297.

DALY, G. (1997): Behaviour of the Bearded dragon lizard Pogona barbata and P. vitticeps in captivity. – Herpetofauna, Sydney, 27 (2): 28-32.

DANIELS, C.B., McGREGOR, L.K. & T.E. NICHOLAS (1994): The dragon's breath: a model for the dynamics of breathing and faveolar ventilation in agamid lizards. – Herpetologica, 50 (3): 251-261.

The lungs of the dragon lizards Ctenophorus nuchalis and Pogona vitticeps are unicameral. We have used the scanning electron microscope (SEM), X-ray, and computerized tomography (CT) scans to study the static and dynamic behavior of the lung during the respiratory cycle in both anaesthetized and unanaesthetized, awake lizards. One awake, quiet C. nuchalis at 37 C held 0.18 ml of air/g body mass in its lungs during nonventilatory periods. However, the right lung holds a smaller volume than the left. During ventilation the caudal third of the lung retains a relatively constant volume, while the anterior portion of the lung undergoes the major changes in volume. Over 70% of the faveoli are located in the anterior two-thirds of the lung. CT scans of P. vitticeps reveal that the dorsal faveoli represent a larger (thicker) band than the ventral faveoli. The ventral surface is also considerably compressed and distorted by other abdominal organs. Most of the pulmonary arteries are located on the dorsal and lateral external walls of the lung. We propose that air moves into the faveoli during inspiration, as the body wall moves outwards, pulling with it the external wall of the lung which is attached by strong connective tissue. If the trabecular network maintains a relatively constant shape, the faveoli will be pulled open and air will be sucked into them. As the lung deflates, the faveoli are compressed against the relatively rigid trabecular network and air is forced out. Hence, each faveolus acts as a bellows. Movement of air in the lung and the function of pulmonary surfactant are also discussed.

ELIMAN, M.M. (1997): Hematology and plasma chemistry of an Inland Bearded Dragon, Pogona vitticeps. – Bulletin of the Association of Reptilian and Amphibian Veterinarians, Chester Heights, PA; 7 (4): 10-12.

FÖRTHER, R. (2002): Siamesische Zwillinge bei Bartagamen. – herpetofauna, Weinstadt, 24 (141): 34.

Abstract:
The author has been breeding Pogona vitticeps for a considerable time. In March this year a successful period of hibernation, attempts at pairing could be observed with one male. After the female increased in size which was intepreted as it being pregnant, I placed it in another terrarium. After a few weeks the female buried her eggs in a heap of sand. The eggs were transferred to an incubator with a temperature of 29-30°C. After 67 days the first juvenile hatched. In one egg, which had collapsed, I discovered two fully developed yet dead juveniles. Both animals had grown together at the head and were socalled siamese twins. Both juveniles were encased in resin to preserve them.

FÖRTHER, R. (2003): Siamesische Bartagamen. – Reptilia, Münster, 8 (2): 10.

FRITZ, P. (2005): Haltung der Streifenköpfigen Bartagame Pogona vitticeps. – Iguana Rundschreiben, 18 (2): 9-14.

Inhalt:
Allgemeines / Die Tiere / Das Terrarium / Die Ernährung / Die Zucht.

HARTDEGEN, R. & M.K. BAYLESS (1999): Twinning in lizards. – Herpetol. Rev., 30 (3): 141.

HAUSCHILD, A. (2004): Die Bartagame (Pogona vitticeps). – Natur und Tier-Verlag, Münster. 68 S.

HÄUßLER, K., STRÜTT, E., DEGER, T., RINDER, M. & R. KORBEL (2021): Vergleichende Untersuchungen zur Elektrokardiographie bei Streifenköpfigen Bartagamen (Pogona vitticeps) unter Injektionsanästhesie. – elaphe 5/2021: 32-35.

HOOG, M. op ‘t (1996): Baardagame, Pogona vitticeps. – Lacerta, 55 (1): 47-49.

JACOBSON, E.R., KOPIUT, W., KENNEDY, F.A. & R.S. FUNK (1996): Coinfection of a bearded dragon, Pogona vitticeps, with adenovirus- and dependovirus-like viruses. – Veterinary Pathology, 33 (3): 343-346.

JOHNSTON, G.R. (1979): The eggs, incubation, and young of the Bearded Dragon Amphibolurus vitticeps AHL 1926. – Herpetofauna, Sydney, 11 (1): 5-8.

KENNERSON, K.J. & G.J. COCHRANE (1981): Avid appetite for Dandelion blossoms Taraxarun officinal by a Western Bearded Dragon Amphibolurus vitticeps AHL. – Herpetofauna, Sydney, 12 (2): 34-35.

KEßLER, K. (2019): Freilandhaltung von Bartagamen. – Reptilia, 24 (5): 38-41.

KOHLMEYER, R. (2000): Verhalten und Interaktion meiner Bartagame (Pogona vitticeps). – Reptilia, Münster, 5 (5): 33-38.

KRÖNKE, F. (2021): Die Bartagame (Pogona vitticeps) –top angesagt oder todlangweilig? Alte Basics in neuem Licht. – elaphe 5/2021: 12-23.

KRÖNKE, F. (2021): Die Bartagame (Pogona vitticeps) – ein Blick über die Terraristik hinaus. – elaphe 5/2021: 24-30.

KUNZ, K. (2000): „Haustier“ Bartagame – schaden Streicheleinheiten? – Draco, Münster, 6 (2): 94-96.

LANE, E.K. (2013): Sexual Selection of Beard Color in the Inland Bearded Dragon (Pogona vitticeps). Thesis. California State University San Marcos. 73 pp.

Many animal traits are the result of inter- or intra-sexual selection. Intersexual selection which usually takes the form of female mate choice, is the process by which an individual chooses a particular mate that exhibits desirable traits, or that provides an immediate benefit, such as access to resources. Intrasexual selection, which is most commonly in the form of male-male competition, is the selection of heritable traits that make an individual more successful when competing with other males and gaining access to mates. These processes often go hand in hand, with traits such as size and coloration being selected for through both processes. Sexually selected traits often contribute to the evolution of sexual dimorphism. The inland bearded dragon (Pogona vitticeps) is a moderately sized Australian agamid species that exhibits sexual dichromatism. Males display a dark gular region, or beard, during breeding season. The current study was designed to determine whether beard color in male bearded dragons has resulted from intersexual selection (demonstrated by a differential response by female subjects to darkand light-bearded males), intrasexual selection (demonstrated by a differential response by male subjects to dark- and light-bearded males), or both. Thirty-two male and 32 female subjects were presented with male bearded dragons that had their beards artificially modified to be either dark black or light gray. Visual inspection (“looking”), approach, and avoidance behaviors were scored from videotapes of the trials. Eye use (right or left) by the subjects was also scored to evaluate a post hoc research question on laterality. Female subjects did not exhibit significantly different behavior when presented with either beard color, and did not favor one eye over the other. Male subjects responded similarly to both beard colors in most measures, with the exception of duration of the first look, and eye use. Males had significantly longer first looks when presented with dark bearded stimuli, and tended to use their right eye preferentially to the left when looking at male stimuli. The data suggest that male-male competition may have an effect on beard coloration in this species. The predominant use of the right eye is also interesting, as it is consistent with findings in other species. While the left eye is usually preferred in aggressive and breeding interactions, some research suggests that the right eye is preferred for categorizing items into broad categories, and in inspection of unfamiliar conspecifics. As stimuli were prevented from seeing subjects, and therefore not displaying aggressive or other typical behaviors, it is likely that there was less activation of the right hemisphere, and so little use of the left eye. The right eye was preferred, likely to more fully inspect and assess or categorize the unfamiliar stimulus male. A lateralized response in males, and a lack of one in females, supports the evidence that beard color is likely a product of intrasexual selection.

LANTERMANN, Y. & W. LANTERMANN (2007): Beobachtungen bei der Vermehrung von Bartagamen. – Die Aquarien- und Terrarienzeitschrift, 60 (2): 38-42.

LOVE, B. (2000): Bartagamenfieber. – Reptilia, Münster, 5 (5): 39-42.

LUTZMANN, N., FRITZ, P. & J. WIECHERT (2008): Eine außergewöhnliche Anomalie bei einer weiblichen Bartagame, Pogona vitticeps (AHL, 1926) (Sauria: Agamidae). – Sauria, Berlin, 30 (2): 47-49.
Abstract:
We describe a captive-bred Pogona vitticeps that hatched without a visible ear on the left side. The left tympanum was inexistent and radiographic examination revealed that the hyoid was completely absent as well. The animal had been hatched in captivity (09/2006) after an incubation period of ca. 70 d, at a constant 28-29°C, on a perlite/vermiculite-mix, from a clutch of 10 eggs from normal parental specimens, and was the only one with an anomaly. The behaviour of the specimen has been normal up to now. Breeding trials should show, if the malformation is accidental or genetically based.

MACK, V. (2016): Alltag mit zwei Bartagamen – ein kleiner Erfahrungsbericht. – Reptilia, Münster, 21 (1): 10, 12.

MANTELL, P. (2000): How much can a bearded bare multiple clutches in a central bearded dragon (Pogona vitticeps). – Monitor, 11 (1): 18-20.

McALLISTER, C.T., UPTON, S.J., JACOBSON, E.R. & W. KOPIT (1995): A description of Isopora amphiboluri (Apicomplexa: Eimeriidae) from the inland bearded dragon, Pogona vitticeps (Sauria : Agamidae). – Journal of Parasitology, 81 (2): 281-284.

McALPIN, S. (1995): Notes on the Central Bearded Dragon Pogona vitticeps in Central Australia. – Monitor: J. Vic. Herp. Soc. Inc., 6 (3): 111-115.

MILNER, K., WADDING, T. & R. MEEK (2004): Effect of husbandry manipulations on respiratory rates in captive Bearded Dragons (Pogona vitticeps). – Herp. Bull., (87): 3-8.

The behaviour, body temperatures and respiratory rates of captive Bearded Dragons (Pogona vitticeps) were recorded during periods with handling and non-handling intervals. Respiratory rates increased at approximately equal rates with increasing body temperatures irrespective of whether the animals were handled or not. Respiratory rates increased significantly after handling but there were no significant differences in behaviour before and after handling. The implications of the results are discussed with regard to use of animals in captive husbandry and education programmes.

MOONS, S. (2008): Pogona vitticeps. – Terra 44 (5): 22-26.

MÜLLER, H.D. (1995): Eine australische Bartagame. – Die Aquar. Terrar. Z., Stuttgart, 48 (12): 779-781.

MÜLLER, H.D. (1999): Pogona vitticeps Bartagame. – Reptilia, Münster, 4 (3): 47-50.

MÜLLER, P.M. (2007): Pogona brevicauda AHRET, 2005 [Ein ironischer Nachruf auf die großen Exemplare von Pogona vitticeps (AHL, 1926)]. – Reptilia, Münster, 12 (4): 3-4.

MÜLLER, P.M. (2014): Zur möglichen Lebenserwartung von Bartagamen (Pogona vitticeps). – Reptilia, Münster, 19 (6): 32-34, 36-37.

MÜLLER, P.M. & R. KOHLMEYER (2005): Bartagamen-FAQ (Frequently Asked Questions). – Draco, Münster, 6 (2): 28-37.

Alter / Abkürzungen / Arten / Austellung des Terrariums / Aufzucht / Auswahl der Tiere / Baden / Bartagamen im Internet / Bastarde / Beleuchtung / Bodengrund / Bodenheizung / Bücher / Eiablage / Einrichtung / Ernährung / Farbvarianten / Fütterungsintervall / Futterverweigerung / Geschlechtsbestimmung / Größe / Haltung mehrerer Tiere / Heimchenfallen / Inkubation / Inzucht / Kinder und Bartagamen / Kontakt Mensch-Tier / Kosten / Kotuntersuchungen / Luftfeuchtigkeit, relative / Quarantäne / Regenerieren von Körperteilen / Samenspeicherung / Schlafverhalten / Sprühen / Temperaturen / Terrariengröße / Thermoregulation / Trinken / Urlaub / UV-B-Bestrahlung / Verhalten / Winterruhe / Zähmen / Zeitschriften / Zucht.

OLLONEN, J., DA SILVA, F.O., MAHLOW, K. & N. DI-POI (2018): Skull development, ossification pattern, and adult shape in the emerging lizard model organism Pogona vitticeps: a comparative analysis with other squamates. – Front. Physiol., 9: 278.

The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution.

PFLUGMACHER, S. (1984): Haltung und Zucht der Australischen Bartagame Amphibolurus vitticeps. – Sauria, Berlin, 6 (3): 9-11.

PFLUGMACHER, S. (1986): Bemerkungen über die Paarung und Zucht von Amphibolurus vitticeps. – herpetofauna, Weinstadt, 8 (45): 31-34.

PINTAVALLI, N. (1993): The captive maintenance and propagation of Pogona vitticeps, inland bearded dragon – In: Chan, S.D. (ed.): Proceedings of the 20th national conference of the4 American Association of Zoo Keepers, Inc., Atlanta, georgia, Oktober 10-14: 27-34.

RANKE-HEINEMANN, S. (2016): Geschlechtsentwicklung bei Bartagamen. – Reptilia, Münster, 21 (4): 8.

ROBERTS, D.T. & W.H. GEHRMANN (1990): Light quality and growth in the bearded lizard, Amphibolurus: a preliminary study. – Bull. Chic. Herp. Soc., 25 (6): 101-103.

ROTHENHÖFER, P. (2000): Die Bartagame. – Die Aquarien- und Terrarien-Zeitschrift, 53 (10): 12-17.

SCHMIDA, G. (2005): Betrachtungen zu ostaustralischen Bartagamen. – Draco, Münster, 6 (2): 47-54.

SCHNEIDER, J., HEYDEL, T., KLASEN, L., PEES, M., SCHRÖDL, W. & V. SCHMIDT (2018): Characterization of Nannizziopsis guarroi with genomic and proteomic analysis in three lizard species. - Medical Mycology, 56: 610-620.

Fungal infections in captive as well as in free-living reptiles caused by emerging obligate pathogenic fungi appear with increasing frequency and give occasion to establish new and fast methods for routine diagnostics. The so-called yellow fungus disease is one of the most important and common fungal dermatomycoses in central bearded dragons (Pogona vitticeps) and green iguanas (Iguana iguana) and is caused by Nannizziopsis guarroi. The aim of this study was to prove reliability in identification of N. guarroi with Matrix-assisted laser desorption/ionization time-of-flightmass spectrometry (MALDI-TOF MS) in comparison to molecular biological analysis of ribosomal DNA genes. In seven lizards from three different species, including central bearded dragons, green iguanas, and a European green lizard (Lacerta viridis), dermatomycoses caused by N. guarroi were diagnosed by isolation of the fungal pathogen as well as histopathological confirmation of the granulomatous inflammatory reaction in deep skin biopsies. With this survey, we proved that MALDI-TOF MS is a diagnostic tool for accurate identification of N. guarroi. Besides small subunit 18S rDNA (SSU) and internal transcribed spacer (ITS)1-5.8S rDNA, a large fragment of the large subunit of the 28S rDNA (LSU), including the domain (D)1 and D2 have been sequenced, for phylogenetical analysis. Large fragment of the LSU from N. guarroi has been sequenced for the first time. Yellow fungus disease in a European lizard species is described for the first time to our knowledge as well, which could be of importance for free-ranging populations of European lizards.

SCHUSTER, U. & N. SCHUSTER (2006): Langschläfer. – Iguana-Rundschreiben, 19 (2): 11.

SERENIO, R. (2005): Zucht/Paarung bei Bartagamen. – M & S Reptilien-Magazin, 2005: 85.

SIVITER, H., DEEMING, D.C. & A. WILKINSON (2019): Egg incubation temperature influences the growth and foraging behaviour of juvenile lizards. – Behav. Proc., 165: 9-13.

After laying their eggs, oviparous reptiles are reliant on the external environment to provide the required incubation conditions for successful embryonic development. Egg incubation temperature can impact the behaviour of various species of reptiles, but previous experiments have focused on the impact of incubation environment on hatchlings, with only a limited number of studies focussing on the longer-term behavioural consequences of incubation environment. This study investigated the effects of developmental environment on bearded dragon lizards (Pogona vitticeps) that were incubated at different temperatures within the natural range; half of them were incubated at a ‘hot’ temperature (30 ± 3 °C) and half at a ‘cold’ temperature (27 ± 3 °C). The growth and foraging behaviour of the lizards was then compared over 18 weeks of development. Although the lizards incubated at a cool temperatures grew more quickly, those incubated at the hotter temperature completed the foraging task more often and had significantly faster running speeds. These results show that egg incubation temperature impacts the foraging behaviour of juvenile lizards and suggest a potential trade-off between growth and foraging speed, which could influence an animal’s life history trajectory.

STEIJN, N.P. van (1989): De verzorging en kweek van de Australische baardagame (Pogona vitticeps). – Lacerta, 47 (5): 140-146. (01.965)

Summary:

The captive bred animals, two males and one female are kept in a dry vivarium (270x140x50 cm). The female laid 83 eggs in two years (two clutches/year). Up to now 51 hatched but 8 of them had a curvature of the spin, probably due to inbreeding. The others eat well and grow without difficulty.

TRAPP, B. (2014): Haut(e) couture für Drachen. – Reptilia, Münster, 19 (6): 26-30.

VINK, A. (2016): Bartagamen im Tiefschlaf. – Reptilia, Münster, 21 (3): 10, 12.

WACHSMANN, S. (2010): Ultraschalluntersuchungen bei Bartagamen (Pogona vitticeps) unter Berücksichtigung klinischer, röntgenologischer und labordiagnostischer Parameter. - Inaugural-Dissertation. DVG Service GmbH, Gießen. 147 pp.

Das Ziel der vorliegenden Arbeit war es, einen Beitrag zur Erweiterung der diagnostischen Möglichkeiten bei der Bartagame (Pogona vitticeps) zu leisten. Zu diesem Zweck wurden 42 Bartagamen sonographisch und radiologisch untersucht. Zusätzlich wurden 22 Blutparameter bestimmt sowie 24 Kotproben zur parasitologischen Untersuchung entnommen. Die untersuchten Tiere stammten aus Privathaltungen und zoologischen Einrichtungen. Es wurden ausschließlich klinisch gesunde Tiere verwendet, die bereits ein Körpergewicht von mindestens 100g erreicht hatten. Insgesamt wurden 19 männliche und 23 weibliche Tiere untersucht, die sich in unterschiedlichen Reproduktionsstadien befanden. Die Ultraschalluntersuchung wurde mit einem handelsüblichen Linearschallkopf mit einer Frequenz von 14 MHz durchgeführt. Die Tiere wurden in aufrecht stehender Position untersucht, in den meisten Fällen ohne zusätzliche Hilfsperson und nach stets gleichem Untersuchungsablauf. Dargestellt werden konnten regelmäßig folgende Organe: Herz, Leber mit Gallenblase und V.cava, Fettkörper, Magen-Darm-Trakt, Reproduktionstrakt (Ovarien oder Hoden) und Nieren. Ihre Strukturen und Positionen konnten im Rahmen dieser Arbeit beschrieben und bildlich dargestellt werden. Schwierigkeiten traten bei der Darstellung des Herzens auf, welches durch seine knochengeschützte Lage der Ultraschalluntersuchung nur sehr begrenzt zugänglich war. Durch die Ultraschalluntersuchung konnten folgende Strukturen vermessen werden:
• Längs- und Querdurchmesser der Gallenblase:längs: 1,05 cm (WB: 0,43 – 2,04 cm); quer: 0,56 cm (WB: 0,23 – 1,4 cm)
• Dünndarmwanddicke: 0,12 (WB: 0,08 – 0,25 cm)
• Längs- und Querdurchmesser der Hoden: Rechts: längs: 1,2 cm (WB: 0,67 – 1,89 cm); quer: 0,67 cm (WB: 0,33 – 1,06 cm) Links: längs 1,36 cm (WB: 0,87 – 1,95 cm); quer: 0,73 cm (WB: 0,41 – 1,05 cm)
• Follikeldurchmesser: Rechts: WB: 0,21 – 1,17 cm Links: WB: 0,17 – 1,29 cm
• Eidurchmesser: längs: 2,52 cm (WB: 1,97 – 2,57 cm) quer: 1,38 cm (WB: 1 – 1,48 cm) Der Vergleich von Röntgen und Ultraschall zeigte, dass die Ultraschalluntersuchung bei der Beurteilung der Organe in den meisten Fällen dem nativen Röntgen überlegen war. Mit Ausnahme von Lunge, Skelettsystem und luft- bzw. materialgefülltem Darm war eine detaillierte Beurteilung der inneren Organe nur durch die Ultraschalluntersuchung zu gewährleisten. Gallenblase, Nieren und Hoden konnten ausschließlich sonographisch dargestellt werden und waren röntgenologisch in keinem Fall abgrenzbar. Folgende hämatologische und blutchemische Parameter, für die schon vergleichbare Messdaten aus der Literatur vorhanden sind, wurden bestimmt: Alanin-Aminotransferase (ALT), Albumin (Alb), Alkalische Phosphatase (AP), Anorganischer Phosphor (P), Aspartat- Aminotransferase (AST), Cholesterol (Chol), Chlorid (Cl-), Creatinkinase (CK), Gesamt-Bilirubin (Bili), Gesamteiweiß (GE), Gesamtkalzium (Ca ges), Glukose (Glu), Harnsäure (UA), Harnstoff (Hast), Ionisiertes Kalium (K+), Ionisiertes Kalzium (Ca2+) und Ionisiertes Natrium (Na+). Zusätzlich wurden folgende blutchemische Parameter bestimmt, für die noch keine Vergleichswerte in der zugänglichen Literatur vorliegen: Cholinesterase (CHE): 1680 U/L (Range: 277 - 3690), Fruktosamin (Fru): 303 μmol/L (WB: 91 – 518), Glutamatdehydrogenase (GLDH): 0,7 U/L (WB: 0,2 – 4,7) und pH-Wert (pH): 7,48 (WB: 7,24 – 7,72). Bei 24 Tieren wurden parasitologische Kotuntersuchungen durchgeführt. Es wurden native Kotausstriche angefertigt und die Parasiten wurden nach Art und Stärke des Befalls ausgewertet. Dabei konnten folgende Parasiten im Kot nachgewiesen werden: Oxyuren, Trichomonas ssp., Nyctotherus ssp., Kokzidien (Isospora amphibulori) und Limaxamöben.

WILMS, T. & K. GRIEßHAMMER (2005): Grundlagen der Haltung von Pogona vitticeps. – Draco, Münster, 6 (2): 20-27.

Inhalt:
Einleitung / Allgemeine Betrachtungen zur Biologie von Bartagamen / Platzbedarf und Terrarium / Terrarientrechnik / Terrarieneinrichtung / „Zahmheit“ / Vergesellschaftung / Häutung / Ernährung / Wasser / Ruhephasen / Vermehrung.

WILSON, K.J. (1974): The relationship of oxygen supply for activity to body temperature in four species of lizards. – Copeia, 1974 (4): 920-934.

WITTEN, G.J. & A.J. COVENTRY (1990): Small Pogona vitticeps (Reptilia: Agamidae) from Big Desert, Victoria, with notes on other Pogona populations. – Proc. Roy. Soc. Vic., 102: 117-120.

zurück / back